13.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS

A Click here for answers.

I–9 Determine whether or not **F** is a conservative vector field. If it is, find a function f such that $\mathbf{F} = \nabla f$.

1.
$$\mathbf{F}(x, y) = (2x - 3y)\mathbf{i} + (2y - 3x)\mathbf{j}$$

2.
$$\mathbf{F}(x, y) = (3x^2 - 4y)\mathbf{i} + (4y^2 - 2x)\mathbf{j}$$

3.
$$\mathbf{F}(x, y) = (x^2 + y) \mathbf{i} + x^2 \mathbf{j}$$

4.
$$\mathbf{F}(x, y) = (x^2 + y)\mathbf{i} + (y^2 + x)\mathbf{j}$$

5.
$$\mathbf{F}(x, y) = (1 + 4x^3y^3)\mathbf{i} + 3x^4y^2\mathbf{j}$$

6.
$$\mathbf{F}(x, y) = (y \cos x - \cos y) \mathbf{i} + (\sin x + x \sin y) \mathbf{j}$$

7.
$$\mathbf{F}(x, y) = (e^{2x} + x \sin y) \mathbf{i} + x^2 \cos y \mathbf{j}$$

8.
$$\mathbf{F}(x, y) = (ye^{xy} + 4x^3y)\mathbf{i} + (xe^{xy} + x^4)\mathbf{j}$$

9.
$$\mathbf{F}(x, y) = (x + y^2) \mathbf{i} + (2xy + y^2) \mathbf{j}$$

10–17 • (a) Find a function f such that $\mathbf{F} = \nabla f$ and (b) use part (a) to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the given curve C.

10.
$$\mathbf{F}(x, y) = x \, \mathbf{i} + y \, \mathbf{j}$$
,
 C is the arc of the parabola $y = x^2$ from $(-1, 1)$ to $(3, 9)$

11.
$$\mathbf{F}(x, y) = y \, \mathbf{i} + x \, \mathbf{j}$$
,
 C is the arc of the curve $y = x^4 - x^3$ from (1, 0) to (2, 8)

12.
$$\mathbf{F}(x, y) = 2xy^3 \mathbf{i} + 3x^2y^2 \mathbf{j},$$

 $C: r(t) = \sin t \mathbf{i} + (t^2 + 1) \mathbf{j}, \ 0 \le t \le \pi/2$

S Click here for solutions.

13.
$$\mathbf{F}(x, y) = e^{2y} \mathbf{i} + (1 + 2xe^{2y}) \mathbf{j},$$

 $C: \mathbf{r}(t) = te^{t} \mathbf{i} + (1 + t) \mathbf{j}, \quad 0 \le t \le 1$

14.
$$\mathbf{F}(x, y, z) = y \, \mathbf{i} + (x + z) \, \mathbf{j} + y \, \mathbf{k},$$

C is the line segment from $(2, 1, 4)$ to $(8, 3, -1)$

15.
$$\mathbf{F}(x, y, z) = 2xy^3z^4\mathbf{i} + 3x^2y^2z^4\mathbf{j} + 4x^2y^3z^3\mathbf{k},$$

 $C: x = t, y = t^2, z = t^3, 0 \le t \le 2$

16.
$$\mathbf{F}(x, y, z) = (2xz + \sin y)\mathbf{i} + x\cos y\mathbf{j} + x^2\mathbf{k},$$

 $C: \mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 2\pi$

17.
$$\mathbf{F}(x, y, z) = 4xe^z \mathbf{i} + \cos y \mathbf{j} + 2x^2 e^z \mathbf{k},$$

 $C: \mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + t^4 \mathbf{k}, \quad 0 \le t \le 1$

18–19 • Show that the line integral is independent of path and evaluate the integral.

18.
$$\int_C 2x \sin y \, dx + (x^2 \cos y - 3y^2) \, dy$$
,
 C is any path from $(-1, 0)$ to $(5, 1)$

19.
$$\int_C (2y^2 - 12x^3y^3) dx + (4xy - 9x^4y^2) dy$$
,
 C is any path from $(1, 1)$ to $(3, 2)$

20. Find the work done by the force field

$$\mathbf{F}(x, y) = x^2 y^3 \mathbf{i} + x^3 y^2 \mathbf{j}$$

in moving an object from P(0, 0) to Q(2, 1).

13.3

ANSWERS

🖪 Click here for exercises.

1.
$$f(x,y) = x^2 - 3xy + y^2 + K$$

- 2. Not conservative
- 3. Not conservative

4.
$$f(x,y) = \frac{1}{3}x^3 + xy + \frac{1}{3}y^3 + K$$

5.
$$f(x,y) = x + x^4y^3 + K$$

6.
$$f(x,y) = y\sin x - x\cos y + K$$

- 7. Not conservative
- **8.** $f(x,y) = e^{xy} + x^4y + K$
- **9.** $f(x,y) = \frac{1}{2}x^2 + xy^2 + \frac{1}{3}y^3 + K$
- **10.** (a) $f(x,y) = \frac{1}{2}x^2 + \frac{1}{2}y^2$ (b) 44
- **11.** (a) f(x,y) = xy
 - (b) 16
- **12.** (a) $f(x,y) = x^2 y^3$

(b)
$$\frac{1}{64} (\pi^2 + 4)^3$$

S Click here for solutions.

13. (a)
$$f(x,y) = xe^{2y} + y$$

(b)
$$e^5 + 1$$

14. (a)
$$f(x, y, z) = xy + yz$$

15. (a)
$$f(x, y, z) = x^2 y^3 z^4$$

(b)
$$2^{20}$$

16. (a)
$$f(x, y, z) = x^2 z + x \sin y$$

(b)
$$2\pi$$

17. (a)
$$f(x, y, z) = 2x^2 e^z + \sin y$$

(b)
$$2e + \sin 1$$

18.
$$25\sin 1 - 1$$

19.
$$-1919$$

20.
$$\frac{8}{3}$$

SOLUTIONS

E Click here for exercises.

- 1. $\frac{\partial}{\partial y}(2x-3y)=-3=\frac{\partial}{\partial x}(2y-3x)$ and the domain of ${\bf F}$ is \mathbb{R}^2 which is open and simply-connected, so ${\bf F}$ is conservative. Thus there exists f such that $\nabla f={\bf F}$, that is, $f_x(x,y)=2x-3y$ and $f_y(x,y)=2y-3x$. But $f_x(x,y)=2x-3y$ implies $f(x,y)=x^2-3yx+g(y)$ and differentiating both sides of this equation with respect to y gives $f_y(x,y)=-3x+g'(y)$. Thus 2y-3x=-3x+g'(y) so g'(y)=2y and $g(y)=y^2+K$ where K is a constant. Hence $f(x,y)=x^2-3xy+y^2+K$ is a potential for ${\bf F}$.
- 2. $\frac{\partial}{\partial y} (3x^2 4y) = -4$, $\frac{\partial}{\partial x} (4y^2 2x) = -2$ and these are not equal, so **F** is not conservative.
- 3. $\frac{\partial}{\partial y}(x^2+y)=1$, $\frac{\partial}{\partial x}(x^2)=2x$ and these are not equal, so **F** is not conservative.
- **4.** $\frac{\partial}{\partial y}\left(x^2+y\right)=1=\frac{\partial}{\partial x}\left(y^2+x\right)$ and the domain of $\mathbf F$ is $\mathbb R^2$ which is open and simply-connected. Thus $\mathbf F$ is conservative so there exists f such that $\nabla f=\mathbf F$. Then $f_x\left(x,y\right)=x^2+y$ implies $f\left(x,y\right)=\frac{1}{3}x^3+xy+g\left(y\right)$ and differentiating both sides with respect to y gives $f_y\left(x,y\right)=x+g'\left(y\right)$. But $f_y\left(x,y\right)=y^2+x$, so $g'\left(y\right)=y^2$ or $g\left(y\right)=\frac{1}{3}y^3+K$. Hence a potential for $\mathbf F$ is $f\left(x,y\right)=\frac{1}{3}x^3+xy+\frac{1}{3}y^3+K$.
- 5. $\frac{\partial}{\partial y}\left(1+4x^3y^3\right)=12x^3y^2=\frac{\partial}{\partial x}\left(3x^4y^2\right)$ and the domain of \mathbf{F} is \mathbb{R}^2 which is open and simply-connected. Thus \mathbf{F} is conservative so there exists f such that $\nabla f=\mathbf{F}$. Then $f_x\left(x,y\right)=1+4x^3y^3$ implies $f\left(x,y\right)=x+x^4y^3+g\left(y\right)$ and $f_y\left(x,y\right)=3x^4y^3+g'\left(y\right)$. But $f_y\left(x,y\right)=3x^4y^2$ implies $g\left(y\right)=K$. Hence a potential for \mathbf{F} is $f\left(x,y\right)=x+x^4y^3+K$.
- 6. $\frac{\partial}{\partial y} (y \cos x \cos y) = \cos x + \sin y$ $= \frac{\partial}{\partial x} (\sin x + x \sin y)$

and the domain of \mathbf{F} is \mathbb{R}^2 which is open and simply-connected. Thus \mathbf{F} is conservative so there exists f such that $\nabla f = \mathbf{F}$. Then $f_x(x,y) = y\cos x - \cos y$ implies $f(x,y) = y\sin x - x\cos y + g(y)$ and $f_y(x,y) = \sin x + x\sin y + g'(y)$. But $f_y(x,y) = \sin x + x\sin y$, so g(y) = K. Hence $f(x,y) = y\sin x - x\cos y + K$ is a potential for \mathbf{F} .

- 7. $\frac{\partial}{\partial y} \left(e^{2x} + x \sin y \right) = x \cos y$, $\frac{\partial}{\partial x} \left(x^2 \cos y \right) = 2x \cos y$, so **F** is not conservative.
- 8. $\frac{\partial}{\partial y} (ye^{xy} + 4x^3y) = e^{xy} (yx+1) + 4x^3$ $= \frac{\partial}{\partial x} (xe^{xy} + x^4)$

and the domain of \mathbf{F} is \mathbb{R}^2 . Thus \mathbf{F} is conservative so there exists f such that $\nabla f = \mathbf{F}$. Then $f_x(x,y) = ye^{xy} + 4x^3y$ implies $f(x,y) = e^{xy} + x^4y + g(y)$ and $f_y(x,y) = xe^{yx} + x^4 + g'(y)$. But $f_y(x,y) = xe^{xy} + x^4$ so g(y) = K and $f(x,y) = e^{xy} + x^4y + K$ is a potential for \mathbf{F} .

- 9. $\frac{\partial}{\partial y}\left(x+y^2\right)=2y=\frac{\partial}{\partial x}\left(2xy+y^2\right)$ and the domain of \mathbf{F} is \mathbb{R}^2 . Hence \mathbf{F} is conservative so there exists f such that $\nabla f=\mathbf{F}$. Then $f_x\left(x,y\right)=x+y^2$ implies $f\left(x,y\right)=x^2/2+xy^2+g\left(y\right)$ and $f_y\left(x,y\right)=2xy+g'\left(y\right)$. But $f_y\left(x,y\right)=2xy+y^2$ so $g'\left(y\right)=y^2$ or $g\left(y\right)=\frac{1}{3}y^3+K$. Then $f\left(x,y\right)=\frac{1}{2}x^2+xy^2+\frac{1}{3}y^3+K$ is a potential for \mathbf{F} .
- **10.** (a) $f_x(x,y) = x$ implies $f(x,y) = \frac{1}{2}x^2 + g(y)$ and $f_y(x,y) = g'(y)$. But $f_y(x,y) = y$ so $g(y) = \frac{1}{2}y^2 + K$ and $f(x,y) = \frac{1}{2}x^2 + \frac{1}{2}y^2 + K$ (or set K = 0.)

(b)
$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(3,9) - f(-1,1) = 44$$

11. (a) $f_x\left(x,y\right)=y$ implies $f\left(x,y\right)=xy+g\left(y\right)$ and $f_y\left(x,y\right)=x+g'\left(y\right)$. But $f_y\left(x,y\right)=x$ so $f\left(x,y\right)=xy$ (setting K=0).

(b)
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(2, 8) - f(1, 0) = 16$$

- **12.** (a) $f_x(x,y) = 2xy^3$ implies $f(x,y) = x^2y^3 + g(y)$ and $f_y(x,y) = 3x^2y^2 + g'(y)$. But $f_y(x,y) = 3x^2y^2$ so $f(x,y) = x^2y^3$ (setting K=0).
 - (b) Since $\mathbf{r}(0) = \langle 0, 1 \rangle$ and $\mathbf{r}(\frac{\pi}{2}) = \langle 1, \frac{1}{4}(\pi^2 + 4) \rangle$, $\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(1, \frac{1}{4}(\pi^2 + 4)) - f(0, 1) = \frac{1}{64}(\pi^2 + 4)^{3}.$
- **13.** (a) $f_x(x,y) = e^{2y}$ implies $f(x,y) = xe^{2y} + g(y)$ and $f_y(x,y) = 2xe^{2y} + g'(y)$. But $f_y(x,y) = 1 + 2xe^{2y}$ so g'(y) = 1 and g(y) = y (setting K = 0). Thus $f(x,y) = xe^{2y} + y$.
 - (b) Since $\mathbf{r}(0) = \langle 0, 1 \rangle$ and $\mathbf{r}(1) = \langle e, 2 \rangle$, $\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(e, 2) - f(0, 1) = (e) e^{4} + 2 - 1 = e^{5} + 1$.

(b)
$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(8,3,-1) - f(2,1,4) = 21 - 6 = 15$$

- **15.** (a) $f_x(x,y,z) = 2xy^3z^4$ implies $f(x,y,z) = x^2y^3z^4 + g(y,z)$ and $f_y(x,y,z) = 3x^2y^2z^4 + g_y(y,z)$. But $f_y(x,y,z) = 3x^2y^2z^4$, so $g_y(y,z) = h(z)$, and also $f(x,y,z) = x^2y^3z^4 + h(z)$, implying $f_z(x,y,z) = 4x^2y^3z^3 + h'(z)$. But $f_z(x,y,z) = 4x^2y^3z^3$, so h'(z) = 0. Hence $f(x,y,z) = x^2y^3z^4$.
 - (b) $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$ and $\mathbf{r}(2) = \langle 2, 4, 8 \rangle$ so $\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(2, 4, 8) f(0, 0, 0) = 2^{2} \cdot 4^{3} \cdot 8^{4} = 2^{20}.$
- **16.** (a) $f_x\left(x,y,z\right) = 2xz + \sin y$ implies $f\left(x,y,z\right) = x^2z + x\sin y + g\left(y,z\right)$ and $f_y\left(x,y,z\right) = x\cos y + g_y\left(y,z\right)$. But $f_y\left(x,y,z\right) = x\cos y$ so $g_y\left(y,z\right) = 0$ and $f\left(x,y,z\right) = x^2z + x\sin y + h\left(z\right)$. Thus $f_z\left(x,y,z\right) = x^2 + h'\left(z\right)$. But $f_z\left(x,y,z\right) = x^2$ so $h'\left(z\right) = 0$ and $f\left(x,y,z\right) = x^2z + x\sin y$ (setting K = 0).
 - (b) $\mathbf{r}(0) = \langle 1, 0, 0 \rangle, \mathbf{r}(2\pi) = \langle 1, 0, 2\pi \rangle$. Thus $\int_C \mathbf{F} \cdot d\mathbf{r} = f(1, 0, 2\pi) f(1, 0, 0) = 2\pi$.
- 17. (a) $f_x\left(x,y,z\right) = 4xe^z$ implies $f\left(x,y,z\right) = 2x^2e^z + g\left(y,z\right)$ and $f_y\left(x,y,z\right) = g_y\left(y,z\right)$. But $f_y\left(x,y,z\right) = \cos y$ so $g_y\left(y,z\right) = \cos y$ or $g\left(y,z\right) = \sin y + h\left(z\right)$. Thus $f\left(x,y,z\right) = 2x^2e^z + \sin y + h\left(z\right)$, and $f_z\left(x,y,z\right) = 2x^2e^z + h'\left(z\right)$. But $f_z\left(x,y,z\right) = 2x^2e^z$ so $h'\left(z\right) = 0$ and $f\left(x,y,z\right) = 2x^2e^z + \sin y$ (setting K=0).
 - (b) $\mathbf{r}(0) = \langle 0, 0, 0 \rangle, \mathbf{r}(1) = \langle 1, 1, 1 \rangle$ so $\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(1, 1, 1) f(0, 0, 0) = 2e + \sin 1.$

18. Here $\mathbf{F}(x,y) = (2x\sin y)\mathbf{i} + (x^2\cos y - 3y^2)\mathbf{j}$. Then $f(x,y) = x^2\sin y - y^3$ is a potential function for \mathbf{F} , that is, $\nabla f = \mathbf{F}$ so \mathbf{F} is conservative and thus its line integral is independent of path. Hence $\int_{\mathbb{R}} 2x\sin y \, dx + (x^2\cos y - 3y^2) \, dy = \int_{\mathbb{R}} \mathbf{F} \cdot d\mathbf{r}$

$$\int_{C} 2x \sin y \, dx + \left(x^{2} \cos y - 3y^{2}\right) dy = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$
$$= f(5, 1) - f(-1, 0) = 25 \sin 1 - 1$$

19. Here $\mathbf{F}(x,y) = \left(2y^2 - 12x^3y^3\right)\mathbf{i} + \left(4xy - 9x^4y^2\right)\mathbf{j}$. Then $f(x,y) = 2xy^2 - 3x^4y^3$ is a potential function for \mathbf{F} , that is, $\nabla f = \mathbf{F}$. Hence \mathbf{F} is conservative and its line integral is independent of path.

$$\int_{C} (2y^{2} - 12x^{3}y^{3}) dx + (4xy - 9x^{4}y^{2}) dy = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$
$$= f(3, 2) - f(1, 1) = -1920 - (-1) = -1919$$

20. $\mathbf{F}(x,y) = x^2y^3 \, \mathbf{i} + x^3y^2 \, \mathbf{j}, W = \int_C \mathbf{F} \cdot d\mathbf{r}.$ Since $\frac{\partial}{\partial y} \left(x^2y^3 \right) = 3x^2y^2 = \frac{\partial}{\partial x} \left(x^3y^2 \right),$ there exists a function f such that $\nabla f = \mathbf{F}.$ In fact, $f_x = x^2y^3 \Rightarrow f\left(x,y \right) = \frac{1}{3}x^3y^3 + g\left(y \right) \Rightarrow f_y = x^3y^2 + g'\left(y \right) \Rightarrow g'\left(y \right) = 0,$ so we can take $f\left(x,y \right) = \frac{1}{3}x^3y^3.$ Thus $W = \int_C \mathbf{F} \cdot d\mathbf{r} = f\left(2,1 \right) - f\left(0,0 \right) = \frac{1}{3} \left(2^3 \right) \left(1^3 \right) - 0 = \frac{8}{3}.$