13.6

PARAMETRIC SURFACES AND THEIR AREAS

A Click here for answers.

I−4 • Find a parametric representation for the surface.

- 1. The part of the hyperboloid $-x^2 y^2 + z^2 = 1$ that lies below the rectangle $[-1, 1] \times [-3, 3]$
- **2.** The part of the elliptic paraboloid $y = 6 3x^2 2z^2$ that lies to the right of the *xz*-plane
- 3. The part of the cylinder $x^2 + z^2 = 1$ that lies between the planes y = -1 and y = 3
- **4.** The part of the plane z = 5 that lies inside the cylinder $x^2 + y^2 = 16$

5–7 • Find an equation of the tangent plane to the given parametric surface at the specified point. If you have software that graphs parametric surfaces, use a computer to graph the surface and the tangent plane.

5.
$$x = u^2$$
, $y = u - v^2$, $z = v^2$; $(1, 0, 1)$

S Click here for solutions.

- **6.** $\mathbf{r}(u, v) = uv \, \mathbf{i} + ue^{v} \, \mathbf{j} + ve^{u} \, \mathbf{k}; \quad (0, 0, 0)$
- **7.** $\mathbf{r}(u, v) = (u + v)\mathbf{i} + u\cos v\mathbf{j} + v\sin u\mathbf{k}; \quad (1, 1, 0)$
- **8.** Find the area of the part of the surface $z = x + y^2$ that lies above the triangle with vertices (0, 0), (1, 1), and (0, 1).
- **9.** Set up, but do not evaluate, an integral for the area of the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$.
- **10.** (a) Use the definition of surface area (6) to find the area of the surface with vector equation

$$\mathbf{r}(u, v) = u \cos v \,\mathbf{i} + u \sin v \,\mathbf{j} + cu \,\mathbf{k}$$

$$0 \le u \le h, 0 \le v \le 2\pi.$$

(b) Identify the surface in part (a) by eliminating the parameters and find the surface area using Equation 9.

13.6

ANSWERS

E Click here for exercises.

1.
$$x = x, y = y, z = -\sqrt{1 + x^2 + y^2},$$

 $-1 \le x \le 1, -3 \le y \le 3$

2.
$$x = x, y = 6 - 3x^2 - 2z^2, z = z, 3x^2 + 2z^2 \le 6$$

3.
$$x = \sin \theta, y = y, z = \cos \theta, 0 \le \theta \le 2\pi, -1 \le y \le 3$$

4.
$$x = r \cos \theta, y = r \sin \theta, z = 5, 0 \le r \le 4, 0 \le \theta \le 2\pi$$

5.
$$x - 2y - 2z + 1 = 0$$

6.
$$x = 0$$

7.
$$(\sin 1) x - (\sin 1) y - z = 0$$

S Click here for solutions.

8.
$$\frac{3}{\sqrt{6}} - \frac{1}{3\sqrt{2}}$$

9.
$$A(S) = 2 \int_{-a}^{a} \int_{-(b/a)\sqrt{a^2 - x^2}}^{(b/a)\sqrt{a^2 - x^2}} |\mathbf{r}_x \times \mathbf{r}_y| \, dy \, dx$$
 where

$$|\mathbf{r}_x imes \mathbf{r}_y|$$

$$=\frac{1}{ab}\sqrt{\frac{a^2b^2\left(a^2b^2-b^2x^2-a^2y^2\right)+c^2b^4x^2+c^2a^4y^2}{a^2b^2-b^2x^2-a^2y^2}}$$

10. (a)
$$\pi h^2 \sqrt{c^2 + 1}$$

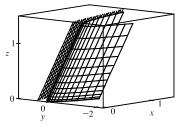
(b) Disk of radius h centered at the origin

13.6

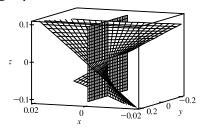
SOLUTIONS

E Click here for exercises.

- 1. Letting x and y be the parameters, parametric equations are $x=x, y=y, z=-\sqrt{1+x^2+y^2}$ (since the surface lies below the rectangle) where $-1 \le x \le 1$ and $-3 \le y \le 3$. Alternate Solution: Using cylindrical coordinates, $x=r\cos\theta, y=r\sin\theta, z=-\sqrt{1+r^2}$ where $-1 \le r\cos\theta \le 1$ and $-3 \le r\sin\theta \le 3$.
- **2.** $x = x, y = 6 3x^2 2z^2, z = z$ where $3x^2 + 2z^2 \le 6$ since $y \ge 0$. Then the associated vector equation is $\mathbf{r}(x,z) = x\,\mathbf{i} + \left(6 3x^2 2z^2\right)\mathbf{j} + z\,\mathbf{k}$.
- **3.** In cylindrical coordinates, parametric equations are $x = \sin \theta, y = y, z = \cos \theta, 0 \le \theta \le 2\pi, -1 \le y \le 3.$
- **4.** The surface is a disk with radius 4 and center (0,0,5). Thus, $x=r\cos\theta,\,y=r\sin\theta,\,z=5$ where $0\leq r\leq 4$, $0\leq\theta\leq 2\pi$ is a parametric representation of the surface. *Alternate Solution:* In rectangular coordinates we could represent the surface as $x=x,\,y=y,\,z=5$ where $0\leq x^2+y^2\leq 16$.
- **5.** $\mathbf{r}(u,v) = \langle u^2, u v^2, v^2 \rangle$. $\mathbf{r}_u = \langle 2u, 1, 0 \rangle$ and $\mathbf{r}_v = \langle 0, -2v, 2v \rangle$, so $\mathbf{r}_u \times \mathbf{r}_v = \langle 2v, -4uv, -4uv \rangle$. The point (1,0,1) corresponds to $u=1, v=\pm 1$. So a normal vector to the surface at (1,0,1) is $\pm \langle 2, -4, -4 \rangle$ and an equation of the tangent plane is 2x 4y 4z = -2 or x 2y 2z + 1 = 0.

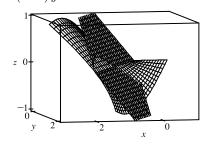


6. $\mathbf{r}(u,v) = uv\,\mathbf{i} + ue^v\,\mathbf{j} + ve^u\,\mathbf{k}$. $\mathbf{r}_u = \langle v,e^v,ve^u\rangle$, $\mathbf{r}_v = \langle u,ue^v,e^u\rangle$, and $\mathbf{r}_u \times \mathbf{r}_v = e^{u+v}\,(1-uv)\,\mathbf{i} + e^u\,(uv-v)\,\mathbf{j} + e^v\,(uv-u)\,\mathbf{k}$. The point (0,0,0) corresponds to u=0,v=0. Thus a normal vector to the surface at (0,0,0) is \mathbf{i} , and an equation of the tangent plane is x=0.



7. $\mathbf{r}(u,v) = (u+v) \mathbf{i} + u \cos v \mathbf{j} + v \sin u \mathbf{k}$. $\mathbf{r}_u = \langle 1, \cos v, v \cos u \rangle, \mathbf{r}_v = \langle 1, -u \sin v, \sin u \rangle, \text{ and }$ $\mathbf{r}_u \times \mathbf{r}_v = \langle \cos v \sin u + uv \cos u \sin v,$ $v \cos u - \sin u, -u \sin v - \cos v \rangle$

The point (1,1,0) corresponds to u=1,v=0. Thus a normal vector to the surface at (1,1,0) is $\langle \sin 1, -\sin 1, -1 \rangle$, and an equation of the tangent plane is $(\sin 1) \ x - (\sin 1) \ y - z = 0$.



- **8.** $z = f(x,y) = x + y^2$ with $0 \le x \le y, 0 \le y \le 1$. Thus, by Formula 9, $A(S) = \iint_D \sqrt{1 + 1 + 4y^2} \, dA = \int_0^1 \int_0^y \sqrt{2 + 4y^2} \, dx \, dy$ $= \int_0^1 \left[x\sqrt{2 + 4y^2} \right]_{x=0}^{x=y} \, dy = \int_0^1 y\sqrt{2 + 4y^2} \, dy$ $= 2\left(\frac{1}{24}\right) \left(2 + 4y^2\right)^{3/2} \Big]_0^1 = \frac{1}{12} \left(6\sqrt{6} 2\sqrt{2}\right)$ $= \frac{3}{\sqrt{6}} \frac{1}{3\sqrt{2}}$
- 9. Let S_1 be that portion of S which lies above the plane z=0. Then $A(S)=2A(S_1)$ and S_1 is given by $z=\frac{c}{ab}\sqrt{a^2b^2-b^2x^2-a^2y^2}, \text{ where } \frac{x^2}{a^2}+\frac{y^2}{b^2}\leq 1 \text{ or } b^2x^2+a^2y^2\leq a^2b^2. \text{ Now } \\ |\mathbf{r}_x\times\mathbf{r}_y|=\left[1+\frac{c^2b^2x^2}{a^2}\left(a^2b^2-b^2x^2-a^2y^2\right)\right]^{1/2}\\ +\frac{c^2a^2y^2}{b^2}\left(a^2b^2-b^2x^2-a^2y^2\right)+c^2b^4x^2+c^2a^4y^2\\ =\frac{1}{ab}\sqrt{\frac{a^2b^2\left(a^2b^2-b^2x^2-a^2y^2\right)+c^2b^4x^2+c^2a^4y^2}{a^2b^2-b^2x^2-a^2y^2}}$

Then $A\left(S\right)=2\int_{-a}^{a}\int_{-(b/a)\sqrt{a^{2}-x^{2}}}^{(b/a)\sqrt{a^{2}-x^{2}}}\left|\mathbf{r}_{x}\times\mathbf{r}_{y}\right|dy\,dx$ with

 $|\mathbf{r}_x \times \mathbf{r}_y|$ given above. Alternate Solution: Let S_1 be as above. Then in spherical coordinates, $x = a \sin \phi \cos \theta$, $y = b \sin \phi \sin \theta$, and $z = c \cos \phi$, where $0 \le \phi \le \frac{\pi}{2}$ and $0 \le \theta \le 2\pi$. Then following Example 9,

$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}$$

= $bc \sin^2 \phi \cos \theta \, \mathbf{i} + ac \sin^2 \phi \sin \theta \, \mathbf{j} + ab \sin \phi \cos \phi \, \mathbf{k}$

Hence,
$$A(S) = 2A(S_1)$$

$$= 2 \int_0^{2\pi} \int_0^{\pi/2} \sqrt{\frac{b^2 c^2 \sin^4 \phi \cos^2 \theta}{+ a^2 c^2 \sin^4 \phi \sin^2 \theta} d\phi d\theta} + a^2 b^2 \sin^2 \phi \cos^2 \phi}$$

10. (a)
$$\mathbf{r}_{u} = \cos v \, \mathbf{i} + \sin v \, \mathbf{j} + c \, \mathbf{k},$$

$$\mathbf{r}_{v} = -u \sin v \, \mathbf{i} + u \cos v \, \mathbf{j} + 0 \, \mathbf{k}, \text{ and}$$

$$\mathbf{r}_{u} \times \mathbf{r}_{v} = -cu \cos v \, \mathbf{i} - cu \sin v \, \mathbf{j} + u \, \mathbf{k} \quad \Rightarrow$$

$$A(S) = \iint_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| \, dA$$

$$= \int_{0}^{2\pi} \int_{0}^{h} \sqrt{c^{2}u^{2} + u^{2}} \, du \, dv$$

$$= \sqrt{c^{2} + 1} \int_{0}^{2\pi} \left[\frac{1}{2} u^{2} \right]_{0}^{h} \, dv = \pi h^{2} \sqrt{c^{2} + 1}$$

(b)
$$x=u\cos v,\,y=u\sin v,\,z=cu$$
 \Rightarrow $x^2+y^2=(z/c)^2$ \Rightarrow $z=c\sqrt{x^2+y^2},\,$ a cone. To find $D,\,$ notice that $0\leq u\leq h$ \Rightarrow $0\leq z\leq ch$ \Rightarrow $0\leq c\sqrt{x^2+y^2}\leq ch$ \Rightarrow $0\leq x^2+y^2\leq h^2.$ So D is a disk of radius h centered at the origin. Therefore

$$A(S) = \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA$$

$$= \iint_D \sqrt{1 + \frac{c^2 x^2}{x^2 + y^2} + \frac{c^2 y^2}{x^2 + y^2}} dA$$

$$= \iint_D \sqrt{1 + c^2} dA = \sqrt{1 + c^2} A(D)$$

$$= \pi h^2 \sqrt{1 + c^2}$$