13.9 THE DIVERGENCE THEOREM

A Click here for answers.

I. Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z) = xz \,\mathbf{i} + yz \,\mathbf{j} + 3z^2 \,\mathbf{k}$ on the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 1.

2–12 • Use the Divergence Theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$; that is, calculate the flux of \mathbf{F} across S.

- **2.** $\mathbf{F}(x, y, z) = 3y^2z^3\mathbf{i} + 9x^2yz^2\mathbf{j} 4xy^2\mathbf{k},$ S is the surface of the cube with vertices $(\pm 1, \pm 1, \pm 1)$
- **3.** $\mathbf{F}(x, y, z) = x^2 y \mathbf{i} x^2 z \mathbf{j} + z^2 y \mathbf{k}$, *S* is the surface of the rectangular box bounded by the planes x = 0, x = 3, y = 0, y = 2, z = 0, and z = 1
- **4.** $\mathbf{F}(x, y, z) = -xz \, \mathbf{i} yz \, \mathbf{j} + z^2 \, \mathbf{k},$ S is the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$
- **5.** $\mathbf{F}(x, y, z) = 3xy \,\mathbf{i} + y^2 \,\mathbf{j} x^2 y^4 \,\mathbf{k}$, S is the surface of the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1)
- **6.** $\mathbf{F}(x, y, z) = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k},$ S is the sphere $x^2 + y^2 + z^2 = 1$

S Click here for solutions.

- **7.** $\mathbf{F}(x, y, z) = x^3 \mathbf{i} + 2xz^2 \mathbf{j} + 3y^2 z \mathbf{k}$, *S* is the surface of the solid bounded by the paraboloid $z = 4 - x^2 - y^2$ and the *xy*-plane
- **8.** $\mathbf{F}(x, y, z) = ye^{z^2}\mathbf{i} + y^2\mathbf{j} + e^{xy}\mathbf{k}$, *S* is the surface of the solid bounded by the cylinder $x^2 + y^2 = 9$ and the planes z = 0 and z = y - 3
- **9.** $\mathbf{F}(x, y, z) = z \cos y \mathbf{i} + x \sin z \mathbf{j} + xz \mathbf{k}$, S is the surface of the tetrahedron bounded by the planes x = 0, y = 0, z = 0, and 2x + y + z = 2
- **10.** $\mathbf{F}(x, y, z) = (x + e^{y \tan z}) \mathbf{i} + 3x e^{xz} \mathbf{j} + (\cos y z) \mathbf{k},$ S is the surface with equation $x^4 + y^4 + z^4 = 1$
- **II.** $\mathbf{F}(x, y, z) = xy^2 \mathbf{i} + yz \mathbf{j} + zx^2 \mathbf{k}$, S is the surface of the solid that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ and between the planes z = 1 and z = 3
- 12. $\mathbf{F}(x, y, z) = (x^3 + yz)\mathbf{i} + x^2y\mathbf{j} + xy^2\mathbf{k}$, S is the surface of the solid bounded by the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 9$

13.9

ANSWERS

E Click here for exercises.

- **2.** 8
- **3.** 24
- **4.** 0
- 5. $\frac{5}{24}$
- **6.** $\frac{12}{5}\pi$
- **7.** 32π

S Click here for solutions.

- **8.** $-\frac{81}{2}\pi$
- **9.** $\frac{1}{6}$
- **10.** 0
- 11. 27π
- 12. $\frac{3376}{15}\pi$

13.9

SOLUTIONS

E Click here for exercises.

1.
$$\operatorname{div} \mathbf{F} = 8z$$
, so

$$\begin{split} \iiint_E \operatorname{div} \mathbf{F} \, dV &= \int_0^{2\pi} \int_0^1 \int_{r^2}^1 8zr \, dz \, dr \, d\theta \\ &= 2\pi \int_0^1 \left(4r - 4r^5 \right) dr = \frac{8}{3}\pi \end{split}$$

On
$$S_1$$
: $\mathbf{F} = x \mathbf{i} + y \mathbf{j} + 3 \mathbf{k}$, $\mathbf{n} = \mathbf{k}$ and

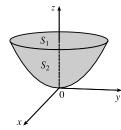
$$\iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_1} 3 \, dS = 3\pi.$$

On
$$S_2$$
: $\mathbf{F} = (x^3 + xy^2)\mathbf{i} + (y^3 + yx^2)\mathbf{j} + 3(x^2 + y^2)^2\mathbf{k}$,

$$-(\mathbf{r}_x \times \mathbf{r}_y) = 2x\,\mathbf{i} + 2y\,\mathbf{j} - \mathbf{k}$$
 and

$$\iint_{S_2} \mathbf{F} \cdot d\mathbf{S} = \iint_{x^2 + y^2 \le 1} \left(-x^4 - y^4 - 2x^2 y^2 \right) dA$$
$$= -\int_0^{2\pi} \int_0^1 r^5 dr d\theta = -\frac{\pi}{3}$$

Hence
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = 3\pi - \frac{\pi}{3} = \frac{8}{3}\pi$$
.



2. div
$$\mathbf{F} = \frac{\partial}{\partial x} (3y^2z^3) + \frac{\partial}{\partial y} (9x^2yz^2) + \frac{\partial}{\partial z} (4xy^2)$$

= $9x^2z^2$

so by the Divergence Theorem,

$$\begin{split} \iint_{S} \mathbf{F} \cdot d\mathbf{S} &= \iiint_{E} 9x^{2}z^{2} \, dV \\ &= \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} 9x^{2}z^{2} \, dx \, dy \, dz = 8 \end{split}$$

3. div
$$\mathbf{F} = \frac{\partial}{\partial x} (x^2 y) + \frac{\partial}{\partial y} (-x^2 z) + \frac{\partial}{\partial z} (z^2 y)$$

= $2xy + 2zy$

so by the Divergence Theorem,

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} (2xy + 2yz) \, dV$$
$$= \int_{0}^{1} \int_{0}^{2} \int_{0}^{3} (2xy + 2yz) \, dx \, dy \, dz = 24$$

4. div
$$\mathbf{F} = \frac{\partial}{\partial x} (-xz) + \frac{\partial}{\partial y} (-yz) + \frac{\partial}{\partial z} (z^2)$$

= $-z - z + 2z = 0$

so
$$\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_E \operatorname{div} \mathbf{F} \, dV = \iiint_E 0 \, dV = 0.$$

5.
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} (5y) \, dV$$

$$= \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} 5y \, dz \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} \left[5 (1-x) y - 5y^{2} \right] \, dy \, dx$$

$$= \int_{0}^{1} \left[\frac{5}{2} (1-x)^{3} - \frac{5}{2} (1-x)^{3} \right] \, dx = \frac{5}{24}$$

6.
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} 3 \left(x^{2} + y^{2} + z^{2} \right) dV$$
$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} 3\rho^{4} \sin \phi \, d\rho \, d\phi \, d\theta$$
$$= 2\pi \int_{0}^{\pi} \frac{3}{5} \sin \phi \, d\phi = \frac{12}{5}\pi$$

7.
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} 3 \left(x^{2} + y^{2} \right) dV$$
$$= \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{4-r^{2}} 3r^{3} dz dr d\theta$$
$$= 2\pi \int_{0}^{2} \left(12r^{3} - 3r^{5} \right) dr = 32\pi$$

8.
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} 2y \, dV$$

$$= \iint_{x^{2} + y^{2} \le 9} \int_{y - 3}^{0} 2y \, dz \, dA$$

$$= \int_{0}^{2\pi} \int_{0}^{3} \int_{-3 + r \sin \theta}^{0} \left(2r^{2} \sin \theta \right) dz \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{3} \left(6r^{2} \sin \theta - 2r^{3} \sin^{2} \theta \right) dr \, d\theta$$

$$= \int_{0}^{2\pi} \left[54 \sin \theta - \frac{81}{2} \sin^{2} \theta \right] d\theta = -\frac{81}{2} \pi$$

9.
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} x \, dV = \int_{0}^{1} \int_{0}^{2-2x} \int_{0}^{2-2x-y} x \, dz \, dy \, dx$$
$$= \int_{0}^{1} \int_{0}^{2-2x} \left[x \left(2 - 2x \right) - xy \right] dy \, dx$$
$$= \int_{0}^{1} \left[x \left(2 - 2x \right)^{2} - \frac{1}{2} x \left(2 - 2x \right)^{2} \right] \, dx = \frac{1}{6}$$

10.
$$\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_E (1-1) \ dV = 0$$

11.
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} (x^{2} + y^{2} + z) dV$$
$$= \int_{0}^{2\pi} \int_{1}^{2} \int_{1}^{3} (r^{2} + z) r dz dr d\theta$$
$$= 2\pi \int_{1}^{2} (2r^{3} + 4r) dr = 27\pi$$

12.
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} 4x^{2} dV$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{2}^{3} \left(4\rho^{2} \sin^{2} \phi \cos^{2} \theta \right) \left(\rho^{2} \sin \phi \right) d\rho d\phi d\theta$$

$$= \left[\int_{0}^{2\pi} 4 \cos^{2} \theta d\theta \right] \left[\int_{0}^{\pi} \sin^{3} \phi d\phi \right] \left[\int_{2}^{3} \rho^{4} d\rho \right]$$

$$= 4\pi \left(\frac{4}{3} \right) \left[\frac{1}{5} \left(3^{5} - 2^{5} \right) \right] = \frac{3376}{15} \pi$$