This project can be completed anytime after you have studied Section 11.7 in the textbook.

The Taylor polynomial approximation to functions of one variable that we discussed in Chapter 8 can be extended to functions of two or more variables. Here we investigate quadratic approximations to functions of two variables and use them to give insight into the Second Derivatives Test for classifying critical points.

In Section 11.4 we discussed the linearization of a function f of two variables at a point (a, b):

$$L(x, y) = f(a, b) + f_{y}(a, b)(x - a) + f_{y}(a, b)(y - b)$$

Recall that the graph of L is the tangent plane to the surface z = f(x, y) at (a, b, f(a, b)) and the corresponding linear approximation is $f(x, y) \approx L(x, y)$. The linearization L is also called the **first-degree Taylor polynomial** of f at (a, b).

1. If f has continuous second-order partial derivatives at (a, b), then the **second-degree Taylor polynomial** of f at (a, b) is

$$Q(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

+ $\frac{1}{2} f_{xx}(a, b)(x - a)^2 + f_{xy}(a, b)(x - a)(y - b) + \frac{1}{2} f_{yy}(a, b)(y - b)^2$

and the approximation $f(x, y) \approx Q(x, y)$ is called the **quadratic approximation** to f at (a, b). Verify that Q has the same first- and second-order partial derivatives as f at (a, b).

- **2.** (a) Find the first- and second-degree Taylor polynomials L and Q of $f(x, y) = e^{-x^2-y^2}$ at (0, 0).
- (b) Graph f, L, and Q. Comment on how well L and Q approximate f.
 - **3.** (a) Find the first- and second-degree Taylor polynomials L and Q for $f(x, y) = xe^{y}$ at (1, 0).
 - (b) Compare the values of L, Q, and f at (0.9, 0.1).
- (c) Graph f, L, and Q. Comment on how well L and Q approximate f.
 - **4.** In this problem we analyze the behavior of the polynomial $f(x, y) = ax^2 + bxy + cy^2$ (without using the Second Derivatives Test) by identifying the graph as a paraboloid.
 - (a) By completing the square, show that if $a \neq 0$, then

$$f(x, y) = ax^2 + bxy + cy^2 = a \left[\left(x + \frac{b}{2a} y \right)^2 + \left(\frac{4ac - b^2}{4a^2} \right) y^2 \right]$$

- (b) Let $D = 4ac b^2$. Show that if D > 0 and a > 0, then f has a local minimum at (0, 0).
- (c) Show that if D > 0 and a < 0, then f has a local maximum at (0, 0).
- (d) Show that if D < 0, then (0, 0) is a saddle point.
- **5.** (a) Suppose f is any function with continuous second-order partial derivatives such that f(0,0) = 0 and (0,0) is a critical point of f. Write an expression for the seconddegree Taylor polynomial, Q, of f at (0, 0).
 - (b) What can you conclude about Q from Problem 4?
 - (c) In view of the quadratic approximation $f(x, y) \approx Q(x, y)$, what does part (b) suggest about f?