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Approximate Integration: Trapezoid Rule and Simpson’s Rule

There are two situations in which it is impossible to find the exact value of a definite  
integral.

The first situation arises from the fact that in order to evaluate yba  f sxd dx using the 
Fundamental Theorem of Calculus we need to know an antiderivative of f. Sometimes, 
however, it is difficult, or even impossible, to find an antiderivative (see Section 5.7). For 
example, it is impossible to evaluate the following integrals exactly:

y1

0
 ex

2 

dx            y1

21
 s1 1 x 3  dx

The second situation arises when the function is determined from a scientific experi-
ment through instrument readings or collected data. There may be no formula for the func-
tion (see Example 5).

In both cases we need to find approximate values of definite integrals. We already know 
one such method. Recall that the definite integral is defined as a limit of Riemann sums, so 
any Riemann sum could be used as an approximation to the integral: If we divide fa, bg into 
n subintervals of equal length Dx − sb 2 adyn, then we have

yb
a
 f sxd dx < o

n

i−1
 f sxi*d Dx

where x i* is any point in the ith subinterval fxi21, xig. If x i* is chosen to be the left endpoint 
of the interval, then x i* − xi21 and we have

yb
a
 f sxd dx < Ln − o

n

i−1
 f sxi21d Dx

If f sxd > 0, then the integral represents an area and (1) represents an approximation of this 
area by the rectangles shown in Figure 1(a). If we choose x i* to be the right endpoint, then 
x i* − xi and we have

yb
a
 f sxd dx < Rn − o

n

i−1
 f sxid Dx

[See Figure 1(b).] The approximations Ln and Rn defined by Equations 1 and 2 are called 
the left endpoint approximation and right endpoint approximation, respectively.

We have also considered the case where x i* is chosen to be the midpoint xi of the sub-
interval fxi21, xig. Figure 1(c) shows the midpoint approximation Mn, which appears to be 
better than either Ln or Rn.

Midpoint Rule �

yb
a
 f sxd dx < Mn − Dx f f sx1d 1 f sx2 d 1 ∙ ∙ ∙ 1 f sxn dg

where	  Dx −
b 2 a

n

and	  xi − 1
2 sxi21 1 xid − midpoint of fxi21, xig

1

⁄ ¤– – ––

(a) Left endpoint approximation

y

x¸ ⁄ ¤ ‹ x¢

x¸ ⁄ ¤ ‹ x¢

‹ x¢

x0

(b) Right endpoint approximation

y

x0

x

(c) Midpoint approximation

y

0

FIGURE 1� 
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2   ■   APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE

Another approximation, called the Trapezoidal Rule, results from averaging the approx-
imations in Equations 1 and 2:

 yb
a
 f sxd dx <

1

2
 Fo

n

i−1
 f sxi21 d Dx 1 o

n

i−1
 f sxid DxG −

Dx

2
 Fo

n

i−1
 s f sxi21 d 1 f sxiddG

 −
Dx

2
 fs f sx0 d 1 f sx1dd 1 s f sx1d 1 f sx2 dd 1 ∙ ∙ ∙ 1 s f sxn21d 1 f sxn ddg

 −
Dx

2
 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ∙ ∙ ∙ 1 2 f sxn21d 1 f sxn dg

Trapezoidal Rule �

yb
a
 f sxd dx < Tn −

Dx

2
 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ∙ ∙ ∙ 1 2 f sxn21d 1 f sxn dg

where Dx − sb 2 adyn and xi − a 1 i Dx.

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates 
the case with f sxd > 0 and n − 4. The area of the trapezoid that lies above the ith sub-
interval is

Dx S  f sxi21d 1 f sxid
2 D −

Dx

2
 f f sxi21d 1 f sxidg

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal Rule.

EXAMPLE �1�  Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n − 5 to  
approximate the integral y2

1
 s1yxd dx.

SOLUTION
(a)  With n − 5, a − 1, and b − 2, we have Dx − s2 2 1dy5 − 0.2, and so the Trape
zoidal Rule gives

 y2

1
 
1

x
 dx < T5 −

0.2

2
 f f s1d 1 2 f s1.2d 1 2 f s1.4d 1 2 f s1.6d 1 2 f s1.8d 1 f s2dg

 − 0.1S 1

1
1

2

1.2
1

2

1.4
1

2

1.6
1

2

1.8
1

1

2D
 < 0.695635

This approximation is illustrated in Figure 3.

(b)  The midpoints of the five subintervals are 1.1, 1.3, 1.5, 1.7, and 1.9, so the Midpoint 
Rule gives

 y2

1
 
1

x
 dx < Dx f f s1.1d 1 f s1.3d 1 f s1.5d 1 f s1.7d 1 f s1.9dg

 −
1

5
 S 1

1.1
1

1

1.3
1

1

1.5
1

1

1.7
1

1

1.9D
 < 0.691908

This approximation is illustrated in Figure 4.	 n

0

y

xx¸ ⁄ ¤ ‹ x¢

1 2

1 2

1
xy=

1
xy=

FIGURE 2�   
Trapezoidal approximation

FIGURE 3�   

FIGURE 4�   
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	 APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE   ■   3

In Example 1 we deliberately chose an integral whose value can be computed explicitly 
so that we can see how accurate the Trapezoidal and Midpoint Rules are. By the Funda-
mental Theorem of Calculus,

y2

1
 
1

x
 dx − ln xg 1

2
− ln 2 − 0.693147 . . .

The error in using an approximation is defined to be the amount that needs to be added to 
the approximation to make it exact. From the values in Example 1 we see that the errors in 
the Trapezoidal and Midpoint Rule approximations for n − 5 are 

ET < 20.002488        and        EM < 0.001239

In general, we have

ET − yb
a
 f sxd dx 2 Tn        and        EM − yb

a
 f sxd dx 2 Mn

The following tables show the results of calculations similar to those in Example 1, but 
for n − 5, 10, and 20 and for the left and right endpoint approximations as well as the Trap
ezoidal and Midpoint Rules.

n Ln Rn Tn Mn

  5 0.745635 0.645635 0.695635 0.691908

10 0.718771 0.668771 0.693771 0.692835

20 0.705803 0.680803 0.693303 0.693069

n EL ER ET EM

  5 20.052488 0.047512 20.002488 0.001239

10 20.025624 0.024376 20.000624 0.000312

20 20.012656 0.012344 20.000156 0.000078

Corresponding errors

We can make several observations from these tables:

1.	�� In all of the methods we get more accurate approximations when we increase the value 
of n. (But very large values of n result in so many arithmetic operations that we have 
to beware of accumulated round-off error.)

2.	�� The errors in the left and right endpoint approximations are opposite in sign and 
appear to decrease by a factor of about 2 when we double the value of n.

3.	�� The Trapezoidal and Midpoint Rules are much more accurate than the endpoint 
approximations.

4.	�� The errors in the Trapezoidal and Midpoint Rules are opposite in sign and appear to 
decrease by a factor of about 4 when we double the value of n.

5.	�� The size of the error in the Midpoint Rule is about half the size of the error in the 
Trapezoidal Rule.

Figure 5 shows why we can usually expect the Midpoint Rule to be more accurate than 
the Trapezoidal Rule. The area of a typical rectangle in the Midpoint Rule is the same as the 
area of the trapezoid ABCD whose upper side is tangent to the graph at P. The area of this 
trapezoid is closer to the area under the graph than is the area of the trapezoid AQRD used 
in the Trapezoidal Rule. [The midpoint error (shaded red) is smaller than the trapezoidal 
error (shaded blue).]

yb
a
 f sxd dx − approximation 1 error

Approximations to y2

1
 
1

x
 dx

It turns out that these observations  
are true in most cases.

C

P

DA

B

R

Q

C

P

DA

B

xi-1 xii-1 x–i

FIGURE 5�   
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4   ■   APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE

These observations are corroborated in the following error estimates, which are proved 
in books on numerical analysis. Notice that Observation 4 corresponds to the n2 in each 
denominator because s2nd2 − 4n2. The fact that the estimates depend on the size of the sec-
ond derivative is not surprising if you look at Figure 5, because f 0sxd measures how much 
the graph is curved. [Recall that f 0sxd measures how fast the slope of y − f sxd changes.]

3 �  Error Bounds � Suppose | f 0sxd | < K for a < x < b. If ET and EM are the errors 
in the Trapezoidal and Midpoint Rules, then

|ET | <
Ksb 2 ad3

12n2         and        |EM | <
Ksb 2 ad3

24n2

Let’s apply this error estimate to the Trapezoidal Rule approximation in Example 1. 
If f sxd − 1yx, then f 9sxd − 21yx 2 and f 0sxd − 2yx 3. Because 1 < x < 2, we have 
1yx < 1, so

| f 0sxd | − Z 2

x 3 Z <
2

13 − 2

Therefore, taking K − 2, a − 1, b − 2, and n − 5 in the error estimate (3), we see that

|ET | <
2s2 2 1d3

12s5d2 −
1

150
< 0.006667

Comparing this error estimate of 0.006667 with the actual error of about 0.002488, we see 
that it can happen that the actual error is substantially less than the upper bound for the 
error given by (3).

EXAMPLE �2�  How large should we take n in order to guarantee that the Trapezoidal and 
Midpoint Rule approximations for y21  s1yxd dx are accurate to within 0.0001?

SOLUTION � We saw in the preceding calculation that | f 0sxd | < 2 for 1 < x < 2, so we 
can take K − 2, a − 1, and b − 2 in (3). Accuracy to within 0.0001 means that the size 
of the error should be less than 0.0001. Therefore we choose n so that

2s1d3

12n2 , 0.0001

Solving the inequality for n, we get

 n2 .
2

12s0.0001d

or	  n .
1

s0.0006 
< 40.8

Thus n − 41 will ensure the desired accuracy.
For the same accuracy with the Midpoint Rule we choose n so that

	  
2s1d3

24n2 , 0.0001        and so        n .
1

s0.0012 
< 29	 n

K can be any number larger than all the 
values of | f 0sxd |, but smaller values of 
K give better error bounds.

It’s quite possible that a lower value for 
n would suffice, but 41 is the smallest 
value for which the error bound formula 
can guarantee us accuracy to within 
0.0001.
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	 APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE   ■   5

EXAMPLE �3� 
(a)  Use the Midpoint Rule with n − 10 to approximate the integral y10 ex

2

dx.
(b)  Give an upper bound for the error involved in this approximation.

SOLUTION�
(a)  Since a − 0, b − 1, and n − 10, the Midpoint Rule gives

 y1

0
 ex

2

dx < Dx f f s0.05d 1 f s0.15d 1 ∙ ∙ ∙ 1 f s0.85d 1 f s0.95dg

 − 0.1fe 0.0025 1 e 0.0225 1 e 0.0625 1 e 0.1225 1 e 0.2025 1 e 0.3025

	      1 e 0.4225 1 e 0.5625 1 e 0.7225 1 e 0.9025g

 < 1.460393

Figure 6 illustrates this approximation.

(b)  Since f sxd − ex
2

, we have f 9sxd − 2xex
2

 and f 0sxd − s2 1 4x 2dex 2

. Also, since 
0 < x < 1, we have x 2 < 1 and so

0 < f 0sxd − s2 1 4x 2dex 2

< 6e

Taking K − 6e, a − 0, b − 1, and n − 10 in the error estimate (3), we see that an upper 
bound for the error is

	
6es1d3

24s10d2 −
e

400
< 0.007	 n

Simpson’s Rule
Another rule for approximate integration results from using parabolas instead of straight 
line segments to approximate a curve. As before, we divide fa, bg into n subintervals  
of equal length h − Dx − sb 2 adyn, but this time we assume that n is an even num-
ber. Then on each consecutive pair of intervals we approximate the curve y − f sxd > 0  
by a parabola as shown in Figure 7. If yi − f sxid, then Pisxi, yid is the point on the curve 
lying above xi. A typical parabola passes through three consecutive points Pi, Pi11,  
and Pi12.

0

y

xa=x¸ ⁄ x™ x¢x£ xß=bx∞

P¸ P¡

P™
P¢

P£

PßP∞

0

y

xh_h

P¸(_h, y¸) P¡(0, ›)

P™(h, fi)

To simplify our calculations, we first consider the case where x0 − 2h, x1 − 0, and 
x2 − h. (See Figure 8.) We know that the equation of the parabola through P0, P1, and 
P2 is of the form y − Ax 2 1 Bx 1 C and so the area under the parabola from x − 2h   

FIGURE 6� 

0

y

x1

y=ex2

Error estimates give upper bounds for 
the error. They are theoretical, worst-
case scenarios. The actual error in this 
case turns out to be about 0.0023.

FIGURE 7  FIGURE 8
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6   ■   APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE

to x − h is

 yh
2h

 sAx 2 1 Bx 1 Cd dx − 2 yh
0
 sAx 2 1 Cd dx − 2FA 

x 3

3
1 CxG

0

h

 − 2SA 
h 3

3
1 ChD −

h

3
 s2Ah 2 1 6Cd

But, since the parabola passes through P0s2h, y0 d, P1s0, y1d, and P2sh, y2 d, we have

 y0 − As2hd2 1 Bs2hd 1 C − Ah 2 2 Bh 1 C

 y1 − C

 y2 − Ah 2 1 Bh 1 C

and therefore	 y0 1 4y1 1 y2 − 2Ah 2 1 6C

Thus we can rewrite the area under the parabola as

h

3
 sy0 1 4y1 1 y2 d

Now by shifting this parabola horizontally we do not change the area under it. This means 
that the area under the parabola through P0, P1, and P2 from x − x0 to x − x2 in Figure 7 is 
still

h

3
 sy0 1 4y1 1 y2 d

Similarly, the area under the parabola through P2, P3, and P4 from x − x2 to x − x4 is

h

3
 sy2 1 4y3 1 y4 d

If we compute the areas under all the parabolas in this manner and add the results, we get

yb
a
 f sxd dx <

h

3
 sy0 1 4y1 1 y2 d 1

h

3
 sy2 1 4y3 1 y4 d 1 ∙ ∙ ∙ 1

h

3
 syn22 1 4yn21 1 yn d

	  −
h

3
 sy0 1 4y1 1 2y2 1 4y3 1 2y4 1 ∙ ∙ ∙ 1 2yn22 1 4yn21 1 yn d

Although we have derived this approximation for the case in which f sxd > 0, it is a rea
sonable approximation for any continuous function f  and is called Simpson’s Rule after the 
English mathematician Thomas Simpson (1710–1761). Note the pattern of coefficients: 
1, 4, 2, 4, 2, 4, 2, . . . , 4, 2, 4, 1.

Simpson’s Rule �

 yb
a
 f sxd dx < Sn −

Dx

3
 f f sx0 d 1 4 f sx1d 1 2 f sx2 d 1 4 f sx3 d 1 ∙ ∙ ∙

 1 2 f sxn22 d 1 4 f sxn21d 1 f sxn dg

where n is even and Dx − sb 2 adyn.

Here we have used Theorem 5.4.6.  
Notice that Ax 2 1 C is even and 
Bx is odd.

Simpson
Thomas Simpson was a weaver who 
taught himself mathematics and 
went on to become one of the best 
English mathematicians of the 18th 
century. What we call Simpson’s Rule 
was actually known to Cavalieri and 
Gregory in the 17th century, but 
Simpson popularized it in his book 
Mathematical Dissertations (1743).
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	 APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE   ■   7

EXAMPLE �4�  Use Simpson’s Rule with n − 10 to approximate y21  s1yxd dx.

SOLUTION � Putting f sxd − 1yx, n − 10, and Dx − 0.1 in Simpson’s Rule, we obtain

 y2

1
 
1

x
 dx < S10

 −
Dx

3
 f f s1d 1 4 f s1.1d 1 2 f s1.2d 1 4 f s1.3d 1 ∙ ∙ ∙ 1 2 f s1.8d 1 4 f s1.9d 1 f s2dg

 −
0.1

3
 S 1

1
1

4

1.1
1

2

1.2
1

4

1.3
1

2

1.4
1

4

1.5
1

2

1.6
1

4

1.7
1

2

1.8
1

4

1.9
1

1

2D
< 0.693150	 n

Notice that, in Example 4, Simpson’s Rule gives us a much better approximation 
sS10 < 0.693150d to the true value of the integral sln 2 < 0.693147. . .d than does the Trap-
ezoidal Rule sT10 < 0.693771d or the Midpoint Rule sM10 < 0.692835d. It turns out (see 
Exercise 50) that the approximations in Simpson’s Rule are weighted averages of those in 
the Trapezoidal and Midpoint Rules:

S2n − 1
3Tn 1 2

3Mn

(Recall that ET and EM usually have opposite signs and |EM | is about half the size of  

|ET |.)
In many applications of calculus we need to evaluate an integral even if no explicit for-

mula is known for y as a function of x. A function may be given graphically or as a table of 
values of collected data. If there is evidence that the values are not changing rapidly, then 
the Trapezoidal Rule or Simpson’s Rule can still be used to find an approximate value for 
yba  y dx, the integral of y with respect to x. 

EXAMPLE �5�  Figure 9 shows data traffic on the link from the United States to SWITCH, 
the Swiss academic and research network, on February 10, 1998. Dstd is the data through-
put, measured in megabits per second sMbysd. Use Simpson’s Rule to estimate the total 
amount of data transmitted on the link from midnight to noon on that day.

0

2

4

6

D
8

3 6 9 12 15 18 21 24 t (hours)

SOLUTION � Because we want the units to be consistent and Dstd is measured in megabits 
per second, we convert the units for t from hours to seconds. If we let Astd be the  
amount of data (in megabits) transmitted by time t, where t is measured in seconds, then 
A9std − Dstd. So, by the Net Change Theorem (see Section 5.4), the total amount 

FIGURE 9� 

©
 2

01
6 

C
en

ga
ge

 L
ea

rn
in

g.
 A

ll 
R

ig
ht

s R
es

er
ve

d.
 T

hi
s c

on
te

nt
 is

 n
ot

 y
et

 fi
na

l a
nd

 C
en

ga
ge

 L
ea

rn
in

g
do

es
 n

ot
 g

ua
ra

nt
ee

 th
is

 p
ag

e 
w

ill
 c

on
ta

in
 c

ur
re

nt
 m

at
er

ia
l o

r m
at

ch
 th

e 
pu

bl
is

he
d 

pr
od

uc
t.



8   ■   APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE

�of data transmitted by noon (when t − 12 3 602 − 43,200) is

As43,200d − y43,200

0
 Dstd dt

We estimate the values of Dstd at hourly intervals from the graph and compile them in the 
table.

t (hours) t (seconds) Dstd t (hours) t (seconds) Dstd

0 0 3.2   7 25,200 1.3
1   3,600 2.7   8 28,800 2.8
2   7,200 1.9   9 32,400 5.7
3 10,800 1.7 10 36,000 7.1
4 14,400 1.3 11 39,600 7.7
5 18,000 1.0 12 43,200 7.9
6 21,600 1.1

Then we use Simpson’s Rule with n − 12 and Dt − 3600 to estimate the integral:

y43,200

0
 Astd dt <

Dt

3
 fDs0d 1 4Ds3600d 1 2Ds7200d 1 ∙ ∙ ∙ 1 4Ds39,600d 1 Ds43,200dg

<
3600

3
 f3.2 1 4s2.7d 1 2s1.9d 1 4s1.7d 1 2s1.3d 1 4s1.0d

1 2s1.1d 1 4s1.3d 1 2s2.8d 1 4s5.7d 1 2s7.1d 1 4s7.7d 1 7.9g

− 143,880

Thus the total amount of data transmitted from midnight to noon is about  
144,000 megabits, or 144 gigabits.	 n

The table in the margin shows how Simpson’s Rule compares with the Midpoint Rule for 
the integral y21  s1yxd dx, whose value is about 0.69314718. The second table shows how the 
error ES in Simpson’s Rule decreases by a factor of about 16 when n is doubled. (In Exer-
cises 27 and 28 you are asked to verify this for two additional integrals.) That is consistent 
with the appearance of n 4 in the denominator of the following error estimate for Simpson’s 
Rule. It is similar to the estimates given in (3) for the Trapezoidal and Midpoint Rules, but 
it uses the fourth derivative of f.

4 �  Error Bound for Simpson’s Rule � Suppose that | f s4dsxd | < K for a < x < b. 
If ES is the error involved in using Simpson’s Rule, then

|ES | <
Ksb 2 ad5

180n 4

EXAMPLE �6�  How large should we take n in order to guarantee that the Simpson’s Rule 
approximation for y21  s1yxd dx is accurate to within 0.0001?

n Mn Sn

4 0.69121989 0.69315453

8 0.69266055 0.69314765

16 0.69302521 0.69314721

n EM ES

4 0.00192729 20.00000735
8 0.00048663 20.00000047

16 0.00012197 20.00000003
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	 APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE   ■   9

SOLUTION � If f sxd − 1yx, then f s4dsxd − 24yx 5. Since x > 1, we have 1yx < 1 and so

| f s4dsxd | − Z 24

x 5 Z < 24

Therefore we can take K − 24 in (4). Thus, for an error less than 0.0001, we should 
choose n so that

 
24s1d5

180n 4 , 0.0001

This gives	  n 4 .
24

180s0.0001d

or	  n .
1

s4 0.00075 
< 6.04

Therefore n − 8 (n must be even) gives the desired accuracy. (Compare this with  
Example 2, where we obtained n − 41 for the Trapezoidal Rule and n − 29 for the Mid-
point Rule.) 	 n

EXAMPLE �7� 
(a)  Use Simpson’s Rule with n − 10 to approximate the integral y10 ex

2 dx.
(b)  Estimate the error involved in this approximation.

SOLUTION
(a)  If n − 10, then Dx − 0.1 and Simpson’s Rule gives 

 y1

0
 ex

2

dx <
Dx

3
 f f s0d 1 4 f s0.1d 1 2 f s0.2d 1 ∙ ∙ ∙ 1 2 f s0.8d 1 4 f s0.9d 1 f s1dg

 −
0.1

3
 fe 0 1 4e 0.01 1 2e 0.04 1 4e 0.09 1 2e 0.16 1 4e 0.25 1 2e 0.36

	 1 4e 0.49 1 2e 0.64 1 4e 0.81 1 e 1 g

 < 1.462681

(b) The fourth derivative of f sxd − ex
2

 is

f s4dsxd − s12 1 48x 2 1 16x 4 dex 2

and so, since 0 < x < 1, we have

0 < f s4dsxd < s12 1 48 1 16de 1 − 76e

Therefore, putting K − 76e, a − 0, b − 1, and n − 10 in (4), we see that the error is at 
most

76es1d5

180s10d4 < 0.000115

(Compare this with Example 3.) Thus, correct to three decimal places, we have

	 y1

0
 ex

2 

dx < 1.463	 n

Many calculators and computer algebra 
systems have a built-in algorithm that 
computes an approximation of a definite 
integral. Some of these machines use 
Simpson’s Rule; others use more sophis- 
ticated techniques such as adaptive 
numerical integration. This means that if 
a function fluctuates much more on a 
certain part of the interval than it does 
elsewhere, then that part gets divided into 
more subintervals. This strategy reduces 
the number of calculations required to 
achieve a prescribed accuracy.

Figure 10 illustrates the calculation in  
Example 7. Notice that the parabolic 
arcs are so close to the graph of y − ex

2

 
that they are practically indistinguish-
able from it.

0

y

x1

y=ex2

FIGURE 10�   
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10   ■   APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE

Exercises

7–18 � Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and 
(c) Simpson’s Rule to approximate the given integral with the 
specified value of n. (Round your answers to six decimal places.)

	 7.	� �y2

1
 sx 3 2 1  dx,    n − 10	 8.	�� y2

0
 

1

1 1 x 6  dx,    n − 8

	 9.	� �y2

0
 

e x

1 1 x 2  dx,    n − 10

	10.	� �y�y2

0
 s3 1 1 cos x   dx,    n − 4

	11.	� �y4

1
 sln x   dx,    n − 6	 12.	�� y1

0
 sinsx 3d dx,    n − 10

	13.	� �y4

0
 est

 

 sin t dt,    n − 8	 14.	�� y1

0
 sz e2zdz,    n − 10

	15.	� �y5

1
 
cos x

x
 dx,    n − 8	 16.	�� y6

4
 lnsx 3 1 2d dx,    n − 10

	17.	� y1

21
 ee

x dx,    n − 10	 18.	�� y4

0
 cos sx   dx,    n − 10

	19.	� �(a)	� Find the approximations T8 and M8 for the integral 
y10 cos sx 2d dx.

	 (b)	 Estimate the errors in the approximations of part (a).
	 (c)	� How large do we have to choose n so that the approxi-

mations Tn and Mn to the integral in part (a) are accurate 
to within 0.0001?

	20.	� �(a)	� Find the approximations T10 and M10 for y21  e 1yx dx.
	 (b)	 Estimate the errors in the approximations of part (a).
	 (c)	� How large do we have to choose n so that the approxi-

mations Tn and Mn to the integral in part (a) are accurate 
to within 0.0001?

	21.	� �(a)	� Find the approximations T10, M10, and S10 for y�0  sin x dx 
and the corresponding errors ET, EM, and ES.

	 (b)	� Compare the actual errors in part (a) with the error esti
mates given by (3) and (4).

	 (c)	� How large do we have to choose n so that the approxi-
mations Tn, Mn, and Sn to the integral in part (a) are 
accurate to within 0.00001?

	22.	� ��How large should n be to guarantee that the Simpson’s Rule 
approximation to y10 e

x 2

dx is accurate to within 0.00001?

	23.	� �The trouble with the error estimates is that it is often very 
difficult to compute four derivatives and obtain a good 
upper bound K for | f s4dsxd | by hand. But computer algebra 
systems have no problem computing f s4d and graphing it, 
so we can easily find a value for K from a machine graph. 
This exercise deals with approximations to the integral 
I − y 2�

0  f sxd dx, where f sxd − e cos x.
	 (a)	 Use a graph to get a good upper bound for | f 0sxd |.
	 (b)	 Use M10 to approximate I.

CAS

	 1.	� ��Let I − y40  f sxd dx, where f  is the function whose graph is 
shown.

	 (a)	 Use the graph to find L2, R2, and M2.
	 (b)	 Are these underestimates or overestimates of I?
	 (c)	 Use the graph to find T2. How does it compare with I?
	 (d)	� For any value of n, list the numbers Ln, Rn, Mn, Tn, and I 

in increasing order.

f

x

1

y

2

3

10 2 3 4

	 2.	� ��The left, right, Trapezoidal, and Midpoint Rule approxi-
mations were used to estimate y20  f sxd dx, where f  is the 
function whose graph is shown. The estimates were 0.7811, 
0.8675, 0.8632, and 0.9540, and the same number of sub-
intervals were used in each case.

	 (a)	 Which rule produced which estimate?
	 (b)	� Between which two approximations does the true value 

of y20  f sxd dx lie?

y

x0

1

2

y=ƒ

	 3.	� ��Estimate y10 cossx 2 d dx using (a) the Trapezoidal Rule and 
(b) the Midpoint Rule, each with n − 4. From a graph of the 
integrand, decide whether your answers are underestimates 
or overestimates. What can you conclude about the true 
value of the integral?

	 4.	� ��Draw the graph of f sxd − sin( 1
2 x

2) in the viewing rectangle
f0, 1g by f0, 0.5g and let I − y10 f sxd dx.

	 (a)	� Use the graph to decide whether L2, R2, M2, and T2 
underestimate or overestimate I.

	 (b)	� For any value of n, list the numbers Ln, Rn, Mn, Tn, and  
I in increasing order.

	 (c)	� Compute L5, R5, M5, and T5. From the graph, which do 
you think gives the best estimate of I?

5–6 � Use (a) the Midpoint Rule and (b) Simpson’s Rule to approxi-
mate the given integral with the specified value of n. (Round your 
answers to six decimal places.) Compare your results to the 
actual value to determine the error in each approximation.

	 5.	� �y2

0
 

x

1 1 x 2  dx,    n − 10	 6.	�� y�

0
 x cos x dx,    n − 4

;
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	 APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE   ■   11

	31.	� �(a)	� Use the Midpoint Rule and the given data to estimate the 
value of the integral y51  f sxd dx.

x f sxd x f sxd

1.0 2.4 3.5 4.0

1.5 2.9 4.0 4.1

2.0 3.3 4.5 3.9

2.5 3.6 5.0 3.5
3.0 3.8

	 (b)	� If it is known that 22 < f 0sxd < 3 for all x, estimate the 
error involved in the approximation in part (a).

	32.	� �(a)	� A table of values of a function t is given. Use Simpson’s 
Rule to estimate y1.6

0
 tsxd dx.

x tsxd x tsxd
0.0 12.1 1.0 12.2

0.2 11.6 1.2 12.6

0.4 11.3 1.4 13.0

0.6 11.1 1.6 13.2
0.8 11.7

	 (b)	� If 25 < ts4dsxd < 2 for 0 < x < 1.6, estimate the error 
involved in the approximation in part (a).

	33.	� ��A graph of the temperature in Boston on August 11, 2013, 
is shown. Use Simpson’s Rule with n − 12 to estimate the 
average temperature on that day.

0 4

70

80

60

8 4 8 tnoon

(F)T

	34.	� ��A radar gun was used to record the speed of a runner during 
the first 5 seconds of a race (see the table). Use Simpson’s 
Rule to estimate the distance the runner covered during those 
5 seconds.

t (s) v (mys) t (s) v (mys)

0 0 3.0 10.51
0.5 4.67 3.5 10.67
1.0 7.34 4.0 10.76
1.5 8.86 4.5 10.81
2.0 9.73 5.0 10.81
2.5 10.22

	 (c)	 Use part (a) to estimate the error in part (b).
	 (d)	� Use the built-in numerical integration capability of your 

CAS to approximate I.
	 (e)	� How does the actual error compare with the error esti-

mate in part (c)?
	 (f )	 Use a graph to get a good upper bound for | f s4dsxd |.
	 (g)	 Use S10 to approximate I.
	 (h)	 Use part (f) to estimate the error in part (g).
	 (i )	� How does the actual error compare with the error esti-

mate in part (h)?
	 ( j)	� How large should n be to guarantee that the size of the 

error in using Sn is less than 0.0001? 

	24.	� �Repeat Exercise 23 for the integral y1

21
 s4 2 x 3  dx.

25–26 � Find the approximations Ln, Rn, Tn, and Mn for n − 5, 10, 
and 20. Then compute the corresponding errors EL, ER, ET,  
and EM. (Round your answers to six decimal places. You may wish 
to use the sum command on a computer algebra system.) What 
observations can you make? In particular, what happens to the 
errors when n is doubled?

	25.	� �y1

0
 xe x dx	 26.	�� y2

1
 

1

x 2  dx

27–28 � Find the approximations Tn, Mn, and Sn for n − 6 and 12. 
Then compute the corresponding errors ET, EM, and ES. (Round 
your answers to six decimal places. You may wish to use the sum 
command on a computer algebra system.) What observations can 
you make? In particular, what happens to the errors when n is 
doubled?

	27.	� �y2

0
 x 4 dx	 28.	�� y4

1
 

1

sx  
 dx

	29.	� ��Estimate the area under the graph in the figure by using 
(a) the Trapezoidal Rule, (b) the Midpoint Rule, and 
(c) Simpson’s Rule, each with n − 6.

1

x

y

0 43 6521

	30.	� ��The widths (in meters) of a kidney-shaped swimming pool 
were measured at 2-meter intervals as indicated in the 
figure. Use Simpson’s Rule to estimate the area of the pool.

6.2

5.0

7.2
6.8

5.6 4.8
4.8

CAS
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12   ■   APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE

	39.	� ��Use Simpson’s Rule with n − 8 to estimate the volume of the 
solid obtained by rotating the region shown in the figure about 
(a) the x-axis and (b) the y-axis.

0 4

4

102 86

2

y

x

	40.	� ��The table shows values of a force function f sxd, where x is 
measured in meters and f sxd in newtons. Use Simpson’s Rule 
to estimate the work done by the force in moving an object a 
distance of 18 m.

x 0 3 6 9 12 15 18

f sxd 9.8 9.1 8.5 8.0 7.7 7.5 7.4

	41.	� ��The region bounded by the curve y − 1ys1 1 e2x d, the x- and y
-axes, and the line x − 10 is rotated about the x-axis. Use Simp-
son’s Rule with n − 10 to estimate the volume of the resulting 
solid.

	42.	� �The figure shows a pendulum with length L that makes a maxi-
mum angle �0 with the vertical. Using Newton’s Second Law, 
it can be shown that the period T (the time for one complete 
swing) is given by

T − 4ÎL

t
   y�y2

0
 

dx

s1 2 k 2 sin2x  

where k − sin( 1
2 �0 ) and t is the acceleration due to gravity. 

If L − 1 m and �0 − 42°, use Simpson’s Rule with n − 10 to 
find the period.

¨¸

	43.	� ��The intensity of light with wavelength � traveling through 
a diffraction grating with N slits at an angle � is given by 
Is�d − N 2 sin2kyk 2, where k − s�Nd sin �dy� and d is the 
distance between adjacent slits. A helium-neon laser with wave-
length � − 632.8 3 1029 m is emitting a narrow band of light, 
given by 21026 , � , 1026, through a grating with 10,000 slits 
spaced 1024 m apart. Use the Midpoint Rule with n − 10 to 
estimate the total light intensity y1026

21026 Is�d d� emerging from the 
grating.

	44.	� ��Use the Trapezoidal Rule with n − 10 to approximate 
y 20

0  coss�xd dx. Compare your result to the actual value.  
Can you explain the discrepancy?

	45.	� ��Sketch the graph of a continuous function on f0, 2g for which 
the Trapezoidal Rule with n − 2 is more accurate than the Mid-
point Rule.

CAS

	35.	� ��The graph of the acceleration astd of a car measured in ftys2 
is shown. Use Simpson’s Rule to estimate the increase in the 
velocity of the car during the 6-second time interval.

a

0 642

4

8

12

t (seconds)

	36.	� ��Water leaked from a tank at a rate of rstd liters per hour, where 
the graph of r is as shown. Use Simpson’s Rule to estimate the 
total amount of water that leaked out during the first 6 hours.

r

0 642

2

4

t (seconds)

	37.	� ��The table (supplied by San Diego Gas and Electric) gives  
the power consumption P in megawatts in San Diego County 
from midnight to 6:00 am on a day in December. Use  
Simpson’s Rule to estimate the energy used during that time 
period. (Use the fact that power is the derivative of energy.)

t P t P

0:00 1814 3:30 1611
0:30 1735 4:00 1621
1:00 1686 4:30 1666
1:30 1646 5:00 1745
2:00 1637 5:30 1886
2:30 1609 6:00 2052
3:00 1604

	38.	� ��Shown is the graph of traffic on an Internet service provider’s 
T1 data line from midnight to 8:00 am. D is the data throughput, 
measured in megabits per second. Use Simpson’s Rule to estimate 
the total amount of data transmitted during that time period.

0

0.4

4 6

0.8

2 8

D

t (hours)
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	 APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE   ■   13

	48.	� ��Show that if f  is a polynomial of degree 3 or lower, then  
Simpson’s Rule gives the exact value of yba f sxd dx.

	49.	� �Show that 12 sTn 1 Mn d − T2n.

	50.	� �Show that 13Tn 1 2
3Mn − S2n.

	46.	� ��Sketch the graph of a continuous function on f0, 2g for which  
the right endpoint approximation with n − 2 is more accurate 
than Simpson’s Rule.

	47.	� ��If f  is a positive function and f 0sxd , 0 for a < x < b, show 
that

Tn , yb
a
 f sxd dx , Mn
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14   ■   

Answers

27.   n Tn Mn Sn
6 6.695473 6.252572 6.403292

12 6.474023 6.363008 6.400206

 n ET EM  ES
6 20.295473 0.147428 20.003292

12 20.074023 0.036992 20.000206

	 Observations are the same as after Example 1.
29.  (a)  19      (b)  18.6      (c)  18.6
31.  (a)  14.4      (b)  1

2        
33.  70.8°F        35.  37.73 ftys        37.  10,177 megawatt-hours      
39.  (a)  190      (b)  828      
41.  28        43.  59.4
45. 

5et070743
Solution Ar t
6.26.02

0 x

y

1

1 20.5 1.5

1.  (a)  L2 − 6, R2 − 12, M2 < 9.6 
(b)  L2 is an underestimate, R2 and M2 are overestimates. 
(c)  T2 − 9 , I      (d)  Ln , Tn , I , Mn , Rn
3.  (a)  T4 < 0.895759 (underestimate) 
(b)  M4 < 0.908907 (overestimate); T4 , I , M4

5.  (a)  M10 < 0.806598, EM < 20.001879 
(b)  S10 < 0.804779, ES < 20.000060
7.  (a)  1.506361      (b)  1.518362      (c)  1.511519
9.  (a)  2.660833      (b)  2.664377      (c)  2.663244
11.  (a)  2.591334      (b)  2.681046      (c)  2.631976
13.  (a)  4.513618      (b)  4.748256      (c)  4.675111
15.  (a)  20.495333      (b)  20.543321      (c)  20.526123
17.  (a)  8.363853      (b)  8.163298      (c)  8.235114
19.  (a)  T8 < 0.902333, M8 < 0.905620 
(b)  |ET | < 0.0078, |EM | < 0.0039 
(c)  n − 71 for Tn, n − 50 for Mn

21.  (a)  T10 < 1.983524, ET < 0.016476; 
M10 < 2.008248, EM < 20.008248;  
S10 < 2.000110, ES < 20.000110 
(b)  |ET | < 0.025839, |EM | < 0.012919, |ES | < 0.000170 
(c)  n − 509 for Tn, n − 360 for Mn, n − 22 for Sn
23.  (a)  2.8      (b)  7.954926518      (c)  0.2894       
(d)  7.954926521      (e)  The actual error is much smaller.    
(f)  10.9      (g)  7.953789422      (h)  0.0593
(i)  The actual error is smaller.      (j)  n > 50
25.   n Ln Rn Tn Mn

5 0.742943 1.286599 1.014771 0.992621
10 0.867782 1.139610 1.003696 0.998152
20 0.932967 1.068881 1.000924 0.999538

 n EL    ER    ET EM
5 0.257057 20.286599 20.014771 0.007379

10 0.132218 20.139610 20.003696 0.001848
20 0.067033 20.068881 20.000924 0.000462

	 Observations are the same as after Example 1.

APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE
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Solutions

1. (a) ∆ = (− ) = (4− 0)2 = 2

2 =
2
=1

(−1)∆ = (0) · 2 + (1) · 2 = 2 [(0) + (2)] = 2(05 + 25) = 6

2 =
2

=1

()∆ = (1) · 2 + (2) · 2 = 2 [(2) + (4)] = 2(25 + 35) = 12

2 =
2
=1

()∆ = (1) · 2 + (2) · 2 = 2 [(1) + (3)] ≈ 2(16 + 32) = 96

(b) 2 is an underestimate, since the area under the small rectangles is less than

the area under the curve, and 2 is an overestimate, since the area under the

large rectangles is greater than the area under the curve. It appears that2

is an overestimate, though it is fairly close to . See the solution to

Exercise 47 for a proof of the fact that if  is concave down on [ ], then

the Midpoint Rule is an overestimate of
 

() .

(c) 2 =


1
2
∆

[(0) + 2(1) + (2)] = 2

2
[(0) + 2(2) + (4)] = 05 + 2(25) + 35 = 9.

This approximation is an underestimate, since the graph is concave down. Thus, 2 = 9  . See the solution to

Exercise 47 for a general proof of this conclusion.

(d) For any , we will have         .

3. () = cos

2

,∆ = 1− 0

4
= 1

4

(a) 4 = 1
4 · 2

(0) + 2


1
4


+ 2


2
4


+ 2


3
4


+ (1)

 ≈ 0895759

(b) 4 = 1
4





1
8


+ 


3
8


+ 


5
8


+ 


7
8

 ≈ 0908907

The graph shows that  is concave down on [0 1]. So 4 is an

underestimate and4 is an overestimate. We can conclude that

0895759 
 1

0
cos

2

  0908907.

5. (a) () =


1 + 2
, ∆ =

− 


=

2 − 0

10
=

1

5

10 = 1
5





1
10


+ 


3
10


+ 


5
10


+ · · ·+ 


19
10

 ≈ 0806598

(b) 10 = 1
5 · 3

(0) + 4


1
5


+ 2


2
5


+ 4


3
5


+ 2


4
5


+ · · ·+ 4


9
5


+ (2)

 ≈ 0804779

Actual:  =

 2

0



1 + 2
 =


1
2

ln
1 + 

2
2

0
[ = 1 + 

2,  = 2]

= 1
2

ln 5− 1
2

ln 1 = 1
2

ln 5 ≈ 0804719

Errors:  = actual−10 =  −10 ≈ −0001879

 = actual− 10 =  − 10 ≈ −0000060
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7. () =
√
3 − 1,∆ =

− 


=

2− 1

10
=

1

10

(a) 10 = 1
10 · 2 [(1) + 2(11) + 2(12) + 2(13) + 2(14) + 2(15)

+ 2(16) + 2(17) + 2(18) + 2(19) + (2)]

≈ 1506361

(b) 10 = 1
10

[(105) + (115) + (125) + (135) + (145) + (155) + (165) + (175) + (185) + (195)]

≈ 1518362

(c) 10 = 1
10 · 3 [(1) + 4(11) + 2(12) + 4(13) + 2(14)

+ 4(15) + 2(16) + 4(17) + 2(18) + 4(19) + (2)]

≈ 1511519

9. () =


1 + 2
,∆ =

− 


=

2− 0

10
=

1

5

(a) 10 = 1
5 · 2 [(0) + 2(02) + 2(04) + 2(06) + 2(08) + 2(1)

+ 2(12) + 2(14) + 2(16) + 2(18) + (2)]

≈ 2660833

(b) 10 = 1
5
[(01) + (03) + (05) + (07) + (09) + (11) + (13) + (15) + (17) + (19)]

≈ 2664377

(c) 10 = 1
5 · 3 [(0) + 4(02) + 2(04) + 4(06) + 2(08)

+ 4(1) + 2(12) + 4(14) + 2(16) + 4(18) + (2)]

≈ 2663244

11. () =
√

ln,∆ = 4− 1
6

= 1
2

(a) 6 = 1
2 · 2 [(1) + 2(15) + 2(2) + 2(25) + 2(3) + 2(35) + (4)] ≈ 2591334

(b) 6 = 1
2
[(125) + (175) + (225) + (275) + (325) + (375)] ≈ 2681046

(c) 6 = 1
2 · 3 [(1) + 4(15) + 2(2) + 4(25) + 2(3) + 4(35) + (4)] ≈ 2631976

13. () = 
√
 sin ,∆ = 4− 0

8
= 1

2

(a) 8 = 1
2 · 2

(0) + 2


1
2


+ 2(1) + 2


3
2


+ 2(2) + 2


5
2


+ 2(3) + 2


7
2


+ (4)

 ≈ 4513618

(b) 8 = 1
2





1
4


+ 


3
4


+ 


5
4


+ 


7
4


+ 


9
4


+ 


11
4


+ 


13
4


+ 


15
4

 ≈ 4748256

(c) 8 = 1
2 · 3

(0) + 4


1
2


+ 2(1) + 4


3
2


+ 2(2) + 4


5
2


+ 2(3) + 4


7
2


+ (4)

 ≈ 4675111

15. () =
cos


,∆ = 5− 1

8
= 1

2

(a) 8 = 1
2 · 2

(1) + 2


3
2


+ 2(2) + · · ·+ 2(4) + 2


9
2


+ (5)

 ≈ −0495333

(b) 8 = 1
2





5
4


+ 


7
4


+ 


9
4


+ 


11
4


+ 


13
4


+ 


15
4


+ 


17
4


+ 


19
4

 ≈ −0543321

(c) 8 = 1
2 · 3

(1) + 4


3
2


+ 2(2) + 4


5
2


+ 2(3) + 4


7
2


+ 2(4) + 4


9
2


+ (5)

 ≈ −0526123
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17. () = 


,∆ =
1− (−1)

10
= 1

5

(a) 10 = 1
5 · 2 [(−1) + 2(−08) + 2(−06) + 2(−04) + 2(−02) + 2(0)

+ 2(02) + 2(04) + 2(06) + 2(08) + (1)]

≈ 8363853

(b) 10 = 1
5
[(−09) + (−07) + (−05) + (−03) + (−01) + (01) + (03) + (05) + (07) + (09)]

≈ 8163298

(c) 10 = 1
5 · 3 [(−1) + 4(−08) + 2(−06) + 4(−04) + 2(−02)

+ 4(0) + 2(02) + 4(04) + 2(06) + 4(08) + (1)]

≈ 8235114

19. () = cos(2),∆ = 1− 0
8

= 1
8

(a) 8 = 1
8 · 2

(0) + 2





1
8


+ 


2
8


+ · · ·+ 


7
8


+ (1)

 ≈ 0902333

8 = 1
8





1
16


+ 


3
16


+ 


5
16


+ · · ·+ 


15
16


= 0905620

(b) () = cos(2),  0() = −2 sin(2),  00() = −2 sin(2)− 42 cos(2). For 0 ≤  ≤ 1, sin and cos are positive,

so | 00()| = 2 sin(2) + 42 cos(2) ≤ 2 · 1 + 4 · 1 · 1 = 6 since sin(2) ≤ 1 and cos

2
 ≤ 1 for all ,

and 2 ≤ 1 for 0 ≤  ≤ 1. So for  = 8, we take = 6,  = 0, and  = 1 in Theorem 3, to get

| | ≤ 6 · 13(12 · 82) = 1
128

= 00078125 and | | ≤ 1
256

= 000390625. [A better estimate is obtained by noting

from a graph of  00 that | 00()| ≤ 4 for 0 ≤  ≤ 1.]

(c) Take = 6 [as in part (b)] in Theorem 3. | | ≤ (− )3

122
≤ 00001 ⇔ 6(1− 0)3

122
≤ 10−4 ⇔

1

22
≤ 1

104
⇔ 22 ≥ 104 ⇔ 2 ≥ 5000 ⇔  ≥ 71. Take  = 71 for . For  , again take = 6 in

Theorem 3 to get | | ≤ 10−4 ⇔ 42 ≥ 104 ⇔ 2 ≥ 2500 ⇔  ≥ 50. Take  = 50 for.

21. () = sin,∆ = − 0
10

= 
10

(a) 10 = 
10 · 2


(0) + 2



10


+ 2


2
10


+ · · ·+ 2


9
10


+ ()

 ≈ 1983524

10 = 
10





20


+ 


3
20


+ 


5
20


+ · · ·+ 


19
20

 ≈ 2008248

10 = 
10 · 3


(0) + 4



10


+ 2


2
10


+ 4


3
10


+ · · ·+ 4


9
10


+ ()

 ≈ 2000110

Since  =
 
0

sin =
− cos


0

= 1− (−1) = 2,  =  − 10 ≈ 0016476,  =  −10 ≈ −0008248,

and  =  − 10 ≈ −0000110.

(b) () = sin ⇒
 ()()

 ≤ 1, so take = 1 for all error estimates.

| | ≤ (− )3

122
=

1( − 0)3

12(10)2
=

3

1200
≈ 0025839. | | ≤ | |

2
=

3

2400
≈ 0012919.

| | ≤ (− )5

1804
=

1( − 0)5

180(10)4
=

5

1,800,000
≈ 0000170.

The actual error is about 64% of the error estimate in all three cases.
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(c) | | ≤ 000001 ⇔ 3

122
≤ 1

105
⇔ 2 ≥ 1053

12
⇒  ≥ 5083. Take  = 509 for .

| | ≤ 000001 ⇔ 3

242
≤ 1

105
⇔ 2 ≥ 1053

24
⇒  ≥ 3594. Take  = 360 for.

| | ≤ 000001 ⇔ 5

1804
≤ 1

105
⇔ 4 ≥ 1055

180
⇒  ≥ 203.

Take  = 22 for  (since  must be even).

23. (a) Using a CAS, we differentiate () = cos  twice, and find that

 00() = cos (sin2 − cos). From the graph, we see that the maximum

value of | 00()| occurs at the endpoints of the interval [0 2].

Since  00(0) = −, we can use =  or = 28.

(b) A CAS gives10 ≈ 7954926518. (In Maple, use Student[Calculus1][RiemannSum] or

Student[Calculus1][ApproximateInt].)

(c) Using Theorem 3 for the Midpoint Rule, with = , we get | | ≤ (2 − 0)3

24 · 102
≈ 0280945995.

With = 28, we get | | ≤ 28(2 − 0)3

24 · 102
= 0 289391916.

(d) A CAS gives  ≈ 7954926521.

(e) The actual error is only about 3× 10−9, much less than the estimate in part (c).

(f) We use the CAS to differentiate twice more, and then graph

 (4)() = cos (sin4 − 6 sin2  cos+ 3− 7 sin2 + cos).

From the graph, we see that the maximum value of
 (4)()

 occurs at the
endpoints of the interval [0 2]. Since  (4)(0) = 4, we can use = 4

or = 109.

(g) A CAS gives 10 ≈ 7953789422. (In Maple, use Student[Calculus1][ApproximateInt].)

(h) Using Theorem 4 with = 4, we get | | ≤ 4(2 − 0)5

180 · 104
≈ 0059153618.

With = 109, we get | | ≤ 109(2 − 0)5

180 · 104
≈ 0059299814.

(i) The actual error is about 7954926521− 7953789422 ≈ 000114. This is quite a bit smaller than the estimate in part (h),

though the difference is not nearly as great as it was in the case of the Midpoint Rule.

( j) To ensure that | | ≤ 00001, we use Theorem 4: | | ≤ 4(2)5

180 · 4
≤ 00001 ⇒ 4(2)5

180 · 00001 ≤ 4 ⇒

4 ≥ 5,915,362 ⇔  ≥ 493. So we must take  ≥ 50 to ensure that | − | ≤ 00001.

( = 109 leads to the same value of .)

APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE
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25.  =
 1

0
 = [(− 1)]

1

0 [by parts] = 0− (−1) = 1, () = ,∆ = 1

 = 5: 5 = 1
5
[(0) + (02) + (04) + (06) + (08)] ≈ 0742943

5 = 1
5
[(02) + (04) + (06) + (08) + (1)] ≈ 1286599

5 = 1
5 · 2 [(0) + 2(02) + 2(04) + 2(06) + 2(08) + (1)] ≈ 1014771

5 = 1
5
[(01) + (03) + (05) + (07) + (09)] ≈ 0992621

 =  − 5 ≈ 1− 0742943 = 0257057

 ≈ 1− 1286599 = −0286599

 ≈ 1− 1014771 = −0014771

 ≈ 1− 0992621 = 0007379

 = 10: 10 = 1
10

[(0) + (01) + (02) + · · ·+ (09)] ≈ 0867782

10 = 1
10

[(01) + (02) + · · ·+ (09) + (1)] ≈ 1139610

10 = 1
10 · 2{(0) + 2[(01) + (02) + · · ·+ (09)] + (1)} ≈ 1003696

10 = 1
10

[(005) + (015) + · · ·+ (085) + (095)] ≈ 0998152

 =  − 10 ≈ 1− 0867782 = 0132218

 ≈ 1− 1139610 = −0139610

 ≈ 1− 1003696 = −0003696

 ≈ 1− 0998152 = 0001848

 = 20: 20 = 1
20

[(0) + (005) + (010) + · · ·+ (095)] ≈ 0932967

20 = 1
20

[(005) + (010) + · · ·+ (095) + (1)] ≈ 1068881

20 = 1
20 · 2{(0) + 2[(005) + (010) + · · ·+ (095)] + (1)} ≈ 1000924

20 = 1
20

[(0025) + (0075) + (0125) + · · ·+ (0975)] ≈ 0999538

 =  − 20 ≈ 1− 0932967 = 0067033

 ≈ 1− 1068881 = −0068881

 ≈ 1− 1000924 = −0000924

 ≈ 1− 0999538 = 0000462

    

5 0742943 1286599 1014771 0992621

10 0867782 1139610 1003696 0998152

20 0932967 1068881 1000924 0999538

    

5 0257057 −0286599 −0014771 0007379

10 0132218 −0139610 −0003696 0001848

20 0067033 −0068881 −0000924 0000462

Observations:

1.  and  are always opposite in sign, as are  and  .

2. As  is doubled,  and  are decreased by about a factor of 2, and  and  are decreased by a factor of about 4.

3. The Midpoint approximation is about twice as accurate as the Trapezoidal approximation.

4. All the approximations become more accurate as the value of  increases.

5. The Midpoint and Trapezoidal approximations are much more accurate than the endpoint approximations.

APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE
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27.  =
 2

0
4  =


1
5
5
2
0

= 32
5
− 0 = 64, () = 4,∆ = 2− 0


= 2



 = 6: 6 = 2
6 · 2

(0) + 2





1
3


+ 


2
3


+ 


3
3


+ 


4
3


+ 


5
3


+ (2)

 ≈ 6695473

6 = 2
6





1
6


+ 


3
6


+ 


5
6


+ 


7
6


+ 


9
6


+ 


11
6

 ≈ 6252572

6 = 2
6 · 3

(0) + 4


1
3


+ 2


2
3


+ 4


3
3


+ 2


4
3


+ 4


5
3


+ (2)

 ≈ 6403292

 =  − 6 ≈ 64− 6695473 = −0295473

 ≈ 64− 6252572 = 0147428

 ≈ 64− 6403292 = −0003292

 = 12: 12 = 2
12 · 2


(0) + 2





1
6


+ 


2
6


+ 


3
6


+ · · ·+ 


11
6


+ (2)

 ≈ 6474023

6 = 2
12





1
12


+ 


3
12


+ 


5
12


+ · · ·+ 


23
12

 ≈ 6363008

6 = 2
12 · 3


(0) + 4


1
6


+ 2


2
6


+ 4


3
6


+ 2


4
6


+ · · ·+ 4


11
6


+ (2)

 ≈ 6400206

 =  − 12 ≈ 64− 6474023 = −0074023

 ≈ 64− 6363008 = 0036992

 ≈ 64− 6400206 = −0000206

   

6 6695473 6252572 6403292

12 6474023 6363008 6400206

   

6 −0295473 0147428 −0003292

12 −0074023 0036992 −0000206

Observations:

1.  and  are opposite in sign and decrease by a factor of about 4 as  is doubled.

2. The Simpson’s approximation is much more accurate than the Midpoint and Trapezoidal approximations, and  seems to

decrease by a factor of about 16 as  is doubled.

29. ∆ = (− ) = (6− 0)6 = 1

(a) 6 = ∆
2

[(0) + 2(1) + 2(2) + 2(3) + 2(4) + 2(5) + (6)]

≈ 1
2
[3 + 2(5) + 2(4) + 2(2) + 2(28) + 2(4) + 1]

= 1
2
(396) = 198

(b) 6 = ∆[(05) + (15) + (25) + (35) + (45) + (55)]

≈ 1[45 + 47 + 26 + 22 + 34 + 32]

= 206

(c) 6 = ∆
3

[(0) + 4(1) + 2(2) + 4(3) + 2(4) + 4(5) + (6)]

≈ 1
3
[3 + 4(5) + 2(4) + 4(2) + 2(28) + 4(4) + 1]

= 1
3
(616) = 2053

31. (a)
 5

1
()  ≈4 = 5− 1

4
[(15) + (25) + (35) + (45)] = 1(29 + 36 + 40 + 39) = 144

APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE
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(b) −2 ≤  00() ≤ 3 ⇒ | 00()| ≤ 3 ⇒  = 3, since | 00()| ≤ . The error estimate for the Midpoint Rule is

| | ≤ (− )3

242
=

3(5− 1)3

24(4)2
=

1

2
.

33. ave = 1
24− 0

 24

0
 ()  ≈ 1

24
12 = 1

24
24− 0
3(12)

[ (0) + 4 (2) + 2 (4) + 4 (6) + 2 (8) + 4 (10) + 2 (12)

+ 4 (14) + 2 (16) + 4 (18) + 2 (20) + 4 (22) +  (24)]

≈ 1
36

[67 + 4(65) + 2(62) + 4(58) + 2(56) + 4(61) + 2(63) + 4(68)

+ 2(71) + 4(69) + 2(67) + 4(66) + 64]

= 1
36

(2317) = 64361◦F.

The average temperature was about 644◦F.

35. By the Net Change Theorem, the increase in velocity is equal to
 6

0
() . We use Simpson’s Rule with  = 6 and

∆ = (6− 0)6 = 1 to estimate this integral: 6

0
()  ≈ 6 = 1

3
[(0) + 4(1) + 2(2) + 4(3) + 2(4) + 4(5) + (6)]

≈ 1
3
[0 + 4(05) + 2(41) + 4(98) + 2(129) + 4(95) + 0] = 1

3
(1132) = 3773 fts

37. By the Net Change Theorem, the energy used is equal to
 6

0
 () . We use Simpson’s Rule with  = 12 and

∆ = 6− 0
12

= 1
2
to estimate this integral: 6

0
 ()  ≈ 12 =

12

3
[ (0) + 4 (05) + 2 (1) + 4 (15) + 2 (2) + 4 (25) + 2 (3)

+ 4 (35) + 2 (4) + 4 (45) + 2 (5) + 4 (55) +  (6)]

= 1
6
[1814 + 4(1735) + 2(1686) + 4(1646) + 2(1637) + 4(1609) + 2(1604)

+ 4(1611) + 2(1621) + 4(1666) + 2(1745) + 4(1886) + 2052]

= 1
6
(61,064) = 10,1773 megawatt-hours

39. (a) Let  = () denote the curve. Using disks,  =
 10

2
[()]2  = 

 10

2
()  = 1.

Now use Simpson’s Rule to approximate 1:

1 ≈ 8 = 10− 2
3(8)

[(2) + 4(3) + 2(4) + 4(5) + 2(6) + 4(7) + (8)]

≈ 1
3
[02 + 4(15)2 + 2(19)2 + 4(22)2 + 2(30)2 + 4(38)2 + 2(40)2 + 4(31)2 + 02]

= 1
3
(18178)

Thus,  ≈  · 1
3
(18178) ≈ 1904 or 190 cubic units.

(b) Using cylindrical shells,  =
 10

2
2()  = 2

 10

2
()  = 21.

Now use Simpson’s Rule to approximate 1:

1 ≈ 8 = 10− 2
3(8)

[2(2) + 4 · 3(3) + 2 · 4(4) + 4 · 5(5) + 2 · 6(6)

+ 4 · 7(7) + 2 · 8(8) + 4 · 9(9) + 10(10)]

≈ 1
3
[2(0) + 12(15) + 8(19) + 20(22) + 12(30) + 28(38) + 16(40) + 36(31) + 10(0)]

= 1
3
(3952)

APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE

Thus,  ≈  · 1
3
(18178) ≈ 1904 or 190 cubic units.
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41. Using disks,  =
 5

1
(−1)2  = 

 5

1
−2  = 1. Now use Simpson’s Rule with () = −2 to approximate

1. 1 ≈ 8 = 5− 1
3(8)

[(1) + 4(15) + 2(2) + 4(25) + 2(3) + 4(35) + 2(4) + 4(45) + (5)] ≈ 1
6
(114566)

Thus,  ≈  · 1
6
(114566) ≈ 60 cubic units.

43. () =
2 sin2 

2
, where  =

 sin 


,  = 10,000,  = 10−4, and  = 6328× 10−9. So () =

(104)2 sin2 

2
,

where  =
(104)(10−4) sin 

6328× 10−9
. Now  = 10 and ∆ =

10−6 − (−10−6)

10
= 2× 10−7, so

10 = 2× 10−7[(−00000009) + (−00000007) + · · ·+ (00000009)] ≈ 594.

45. Consider the function  whose graph is shown. The area
 2

0
() 

is close to 2. The Trapezoidal Rule gives

2 = 2− 0
2 · 2 [(0) + 2(1) + (2)] = 1

2
[1 + 2 · 1 + 1] = 2.

The Midpoint Rule gives2 = 2− 0
2

[(05) + (15)] = 1[0 + 0] = 0,

so the Trapezoidal Rule is more accurate.

47. Since the Trapezoidal and Midpoint approximations on the interval [ ] are the sums of the Trapezoidal and Midpoint

approximations on the subintervals [−1 ],  = 1 2     , we can focus our attention on one such interval. The condition

 00()  0 for  ≤  ≤  means that the graph of  is concave down as in Figure 5. In that figure,  is the area of the

trapezoid ,
 

()  is the area of the region , and is the area of the trapezoid , so

 
 

()   . In general, the condition  00  0 implies that the graph of  on [ ] lies above the chord joining the

points ( ()) and ( ()). Thus,
 

()   . Since is the area under a tangent to the graph, and since  00  0

implies that the tangent lies above the graph, we also have 
 

() . Thus,  

 

()   .

49.  = 1
2
∆ [(0) + 2(1) + · · ·+ 2(−1) + ()] and

 = ∆ [(1) + (2) + · · ·+ (−1) + ()], where  = 1
2
(−1 + ). Now

2 = 1
2


1
2
∆

[(0) + 2(1) + 2(1) + 2(2) + 2(2) + · · ·+ 2(−1) + 2(−1) + 2() + ()] so

1
2
( +) = 1

2
 + 1

2


= 1
4
∆[(0) + 2(1) + · · ·+ 2(−1) + ()] + 1

4
∆[2(1) + 2(2) + · · ·+ 2(−1) + 2()]

= 2

APPROXIMATE INTEGRATION: TRAPEZOID RULE AND SIMPSON’S RULE
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