What do we mean when we express a number as an infinite decimal? For instance, what does it mean to write

\[
\pi = 3.14159265358979323846264338327950288 \ldots
\]

The convention behind our decimal notation is that any number can be written as an infinite sum. Here it means that

\[
\pi = 3 + \frac{1}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{5}{10^4} + \frac{9}{10^5} + \frac{2}{10^6} + \frac{6}{10^7} + \frac{5}{10^8} + \ldots
\]

where the three dots (\(\ldots\)) indicate that the sum continues forever, and the more terms we add, the closer we get to the actual value of \(\pi\).

In general, if we try to add the terms of an infinite sequence \(\{a_n\}_{n=1}^{\infty}\) we get an expression of the form

\[
a_1 + a_2 + a_3 + \ldots + a_n + \ldots
\]

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

\[
\sum_{n=1}^{\infty} a_n
\]

Does it make sense to talk about the sum of infinitely many terms?

It would be impossible to find a finite sum for the series

\[
1 + 2 + 3 + 4 + 5 + \ldots + n + \ldots
\]

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 21, \ldots and, after the \(n\)th term, we get \(n(n+1)/2\), which becomes very large as \(n\) increases.

However, if we start to add the terms of the series

\[
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \ldots + \frac{1}{2^n} + \ldots
\]

we get \(\frac{1}{2}, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}, \frac{63}{32}, \ldots\), \(1 - 1/2^n, \ldots\). The table shows that as we add more and more terms, these partial sums become closer and closer to 1. In fact, by adding sufficiently many terms of the series we can make the partial sums as close as we like to 1. So it seems reasonable to say that the sum of this infinite series is 1 and to write

\[
\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots + \frac{1}{2^n} + \ldots = 1
\]

We use a similar idea to determine whether or not a general series (1) has a sum. We consider the partial sums

\[
s_1 = a_1
\]

\[
s_2 = a_1 + a_2
\]

\[
s_3 = a_1 + a_2 + a_3
\]

\[
s_4 = a_1 + a_2 + a_3 + a_4
\]

and, in general,

\[
s_n = a_1 + a_2 + a_3 + \ldots + a_n = \sum_{i=1}^{n} a_i
\]
These partial sums form a new sequence \(\{s_n\} \), which may or may not have a limit. If \(\lim_{n \to \infty} s_n = s \) exists (as a finite number), then, as in the preceding example, we call it the sum of the infinite series \(\sum a_n \).

2 Definition Given a series \(\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots \), let \(s_n \) denote its \(n \)th partial sum:

\[
s_n = \sum_{i=1}^{n} a_i = a_1 + a_2 + \cdots + a_n
\]

If the sequence \(\{s_n\} \) is convergent and \(\lim_{n \to \infty} s_n = s \) exists as a real number, then the series \(\sum a_n \) is called **convergent** and we write

\[
a_1 + a_2 + \cdots + a_n + \cdots = s \quad \text{or} \quad \sum_{n=1}^{\infty} a_n = s
\]

The number \(s \) is called the **sum** of the series. If the sequence \(\{s_n\} \) is divergent, then the series is called **divergent**.

Thus the sum of a series is the limit of the sequence of partial sums. So when we write \(\sum_{n=1}^{\infty} a_n = s \), we mean that by adding sufficiently many terms of the series we can get as close as we like to the number \(s \). Notice that

\[
\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{i=1}^{n} a_i
\]

EXAMPLE 1 Suppose we know that the sum of the first \(n \) terms of the series \(\sum_{n=1}^{\infty} a_n \) is

\[
s_n = a_1 + a_2 + \cdots + a_n = \frac{2n}{3n + 5}
\]

Then the sum of the series is the limit of the sequence \(\{s_n\} \):

\[
\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{2n}{3n + 5} = \lim_{n \to \infty} \frac{2}{3} + \frac{5}{n} = \frac{2}{3}
\]

In Example 1 we were **given** an expression for the sum of the first \(n \) terms, but it’s usually not easy to **find** such an expression. In Example 2, however, we look at a famous series for which we can find an explicit formula for \(s_n \). See also Section 2.1.

EXAMPLE 2 An important example of an infinite series is the **geometric series**

\[
a + ar + ar^2 + ar^3 + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1} \quad a \neq 0
\]

Each term is obtained from the preceding one by multiplying it by the **common ratio** \(r \). (We have already considered the special case where \(a = \frac{1}{2} \) and \(r = \frac{1}{2} \) on page 1.)

If \(r = 1 \), then \(s_n = a + a + \cdots + a = na \to \pm \infty \). Since \(\lim_{n \to \infty} s_n \) doesn’t exist, the geometric series diverges in this case.

If \(r \neq 1 \), we have

\[
s_n = a + ar + ar^2 + \cdots + ar^{n-1}
\]

and

\[
rs_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n
\]
Subtracting these equations, we get
\[
s_n - rs_n = a - ar^n
\]

So
\[
s_n = \frac{a(1 - r^n)}{1 - r}
\]

If \(-1 < r < 1\), then \(r^n \to 0\) as \(n \to \infty\), so
\[
\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{a(1 - r^n)}{1 - r} = \frac{a}{1 - r} - \frac{a}{1 - r} \lim_{n \to \infty} r^n = \frac{a}{1 - r}
\]

Thus when \(|r| < 1\) the geometric series is convergent and its sum is \(a/(1 - r)\).

If \(r \leq -1\) or \(r > 1\), the sequence \(\{r^n\}\) is divergent and so, by Equation 3, \(\lim_{n \to \infty} s_n\) does not exist. Therefore the geometric series diverges in those cases.

We summarize the results of Example 2 as follows.

\[
\sum_{n=1}^\infty ar^{n-1} = a + ar + ar^2 + \cdots
\]

is convergent if \(|r| < 1\) and its sum is
\[
\sum_{n=1}^\infty ar^{n-1} = \frac{a}{1 - r} \quad |r| < 1
\]

If \(|r| \geq 1\), the geometric series is divergent.

EXAMPLE 3 Find the sum of the geometric series

\[
5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots
\]

SOLUTION The first term is \(a = 5\) and the common ratio is \(r = -\frac{2}{3}\). Since \(|r| = \frac{2}{3} < 1\), the series is convergent by (4) and its sum is
\[
5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots = \frac{5}{1 - (-\frac{2}{3})} = \frac{5}{\frac{5}{3}} = 3
\]

What do we really mean when we say that the sum of the series in Example 3 is 3? Of course, we can’t literally add an infinite number of terms, one by one. But, according to Definition 2, the total sum is the limit of the sequence of partial sums. So, by taking the sum of sufficiently many terms, we can get as close as we like to the number 3. The table shows the first ten partial sums \(s_n\) and the graph in Figure 2 shows how the sequence of partial sums approaches 3.
EXAMPLE 4 Is the series $\sum_{n=1}^{\infty} 2^{2n}3^{-n}$ convergent or divergent?

SOLUTION Let’s rewrite the nth term of the series in the form $a r^{n-1}$:

$$\sum_{n=1}^{\infty} 2^{2n}3^{-n} = \sum_{n=1}^{\infty} (2^2)3^{-(n-1)} = \sum_{n=1}^{\infty} \frac{4^n}{3^{n-1}} = \sum_{n=1}^{\infty} 4\left(\frac{1}{3}\right)^{n-1}$$

We recognize this series as a geometric series with $a = 4$ and $r = \frac{1}{3}$. Since $r > 1$, the series diverges by (4).

EXAMPLE 5 Write the number $2.3171717\ldots$ as a ratio of integers.

SOLUTION

$$2.3171717\ldots = 2.3 + \frac{17}{10^3} + \frac{17}{10^6} + \frac{17}{10^9} + \cdots$$

After the first term we have a geometric series with $a = 17/10^3$ and $r = 1/10^3$. Therefore

$$2.317 = 2.3 + \frac{17}{10^3} \left(1 - \frac{1}{10^3}\right) = 2.3 + \frac{17}{1000} \left(1 - \frac{1}{10^3}\right)$$

$$= \frac{23}{10} + \frac{17}{990} = \frac{1147}{495}$$

EXAMPLE 6 Find the sum of the series $\sum_{n=0}^{\infty} x^n$, where $|x| < 1$.

SOLUTION Notice that this series starts with $n = 0$ and so the first term is $x^0 = 1$. (With series, we adopt the convention that $x^0 = 1$ even when $x = 0$.) Thus

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

This is a geometric series with $a = 1$ and $r = x$. Since $|r| = |x| < 1$, it converges and (4) gives

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1 - x}$$

EXAMPLE 7 Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent, and find its sum.

SOLUTION This is not a geometric series, so we go back to the definition of a convergent series and compute the partial sums.

$$s_n = \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{n(n+1)}$$

We can simplify this expression if we use the partial fraction decomposition

$$\frac{1}{i(i+1)} = \frac{1}{i} - \frac{1}{i+1}$$
Notice that the terms cancel in pairs. This is an example of a **telescoping sum**: Because of all the cancellations, the sum collapses (like a pirate’s collapsing telescope) into just two terms.

Figure 3 illustrates Example 7 by showing the graphs of the sequence of terms $a_n = 1/(n(n + 1))$ and the sequence $\{s_n\}$ of partial sums. Notice that $a_n \to 0$ and $s_n \to 1$. See Exercises 76 and 77 for two geometric interpretations of Example 7.

FIGURE 3

The method used in Example 9 for showing that the harmonic series diverges is due to the French scholar Nicole Oresme (1323–1382).

(see Section 5.6). Thus we have

$$s_n = \sum_{i=1}^{n} \frac{1}{i(i + 1)} = \sum_{i=1}^{n} \left(\frac{1}{i} - \frac{1}{i + 1} \right) = \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \ldots + \left(\frac{1}{n} - \frac{1}{n + 1} \right)$$

$$= 1 - \frac{1}{n + 1}$$

and so

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n + 1} \right) = 1 - 0 = 1$$

Therefore the given series is convergent and

$$\sum_{n=1}^{\infty} \frac{1}{n(n + 1)} = 1$$

EXAMPLE 8 Show that the harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots$$

is divergent.

SOLUTION For this particular series it’s convenient to consider the partial sums $s_2, s_4, s_8, s_{16}, s_{32}, \ldots$ and show that they become large.

$$s_2 = 1 + \frac{1}{2}$$

$$s_4 = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4} \right) > 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{3} \right) = 1 + \frac{2}{3}$$

$$s_8 = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4} \right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \right)$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{3} \right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \right)$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2}$$

$$s_{16} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4} \right) + \left(\frac{1}{5} + \ldots + \frac{1}{16} \right)$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{3} \right) + \left(\frac{1}{5} + \ldots + \frac{1}{16} \right)$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2}$$

Similarly, $s_{32} > 1 + \frac{5}{2}, s_{64} > 1 + \frac{6}{2}$, and in general

$$s_{2^n} > 1 + \frac{n}{2}$$

This shows that $s_{2^n} \to \infty$ as $n \to \infty$ and so $\{s_n\}$ is divergent. Therefore the harmonic series diverges.

6 Theorem If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$.
PROOF Let $s_n = a_1 + a_2 + \cdots + a_n$. Then $a_n = s_n - s_{n-1}$. Since $\sum a_n$ is convergent, the sequence $\{s_n\}$ is convergent. Let $\lim_{n \to \infty} s_n = s$. Since $n - 1 \to \infty$ as $n \to \infty$, we also have $\lim_{n \to \infty} s_{n-1} = s$. Therefore

$$\lim a_n = \lim (s_n - s_{n-1}) = \lim s_n - \lim s_{n-1} = s - s = 0$$

NOTE 1 With any series $\sum a_n$ we associate two sequences: the sequence $\{s_n\}$ of its partial sums and the sequence $\{a_n\}$ of its terms. If $\sum a_n$ is convergent, then the limit of the sequence $\{s_n\}$ is s (the sum of the series) and, as Theorem 6 asserts, the limit of the sequence $\{a_n\}$ is 0.

NOTE 2 The converse of Theorem 6 is not true in general. If $\lim_{n \to \infty} a_n = 0$, we cannot conclude that $\sum a_n$ is convergent. Observe that for the harmonic series $\sum 1/n$ we have $a_n = 1/n \to 0$ as $n \to \infty$, but we showed in Example 8 that $\sum 1/n$ is divergent.

7 Test for Divergence If $\lim_{n \to \infty} a_n$ does not exist or if $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not divergent, then it is convergent, and so $\lim_{n \to \infty} a_n = 0$.

EXAMPLE 9 Show that the series $\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$ diverges.

SOLUTION

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2}{5n^2 + 4} = \lim_{n \to \infty} \frac{1}{5 + 4/n^2} = \frac{1}{5} \neq 0$$

So the series diverges by the Test for Divergence.

NOTE 3 If we find that $\lim_{n \to \infty} a_n \neq 0$, we know that $\sum a_n$ is divergent. If we find that $\lim_{n \to \infty} a_n = 0$, we know nothing about the convergence or divergence of $\sum a_n$. Remember the warning in Note 2: if $\lim_{n \to \infty} a_n = 0$, the series $\sum a_n$ might converge or it might diverge.

8 Theorem If $\sum a_n$ and $\sum b_n$ are convergent series, then so are the series $\sum c a_n$ (where c is a constant), $\sum (a_n + b_n)$, and $\sum (a_n - b_n)$, and

(i) $\sum_{n=1}^{\infty} c a_n = c \sum_{n=1}^{\infty} a_n$
(ii) $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$
(iii) $\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$

These properties of convergent series follow from the corresponding Limit Laws for Sequences in Section 2.1. For instance, here is how part (ii) of Theorem 8 is proved:

Let

$$s_n = \sum_{i=1}^{n} a_i \quad s = \sum_{n=1}^{\infty} a_n \quad t_n = \sum_{i=1}^{n} b_i \quad t = \sum_{n=1}^{\infty} b_n$$
The nth partial sum for the series $\sum(a_n + b_n)$ is

$$u_n = \sum_{i=1}^{n} (a_i + b_i)$$

and thus we have

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \sum_{i=1}^{n} (a_i + b_i) = \lim_{n \to \infty} \left(\sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} a_i + \lim_{n \to \infty} \sum_{i=1}^{n} b_i$$

$$= \lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n = s + t$$

Therefore $\sum(a_n + b_n)$ is convergent and its sum is

$$\sum_{n=1}^{\infty} (a_n + b_n) = s + t = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

EXAMPLE 10 Find the sum of the series $\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} + \frac{1}{2^n} \right)$.

SOLUTION The series $\sum\frac{1}{n(n+1)}$ is a geometric series with $a = \frac{1}{2}$ and $r = \frac{1}{2}$, so

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$

In Example 7 we found that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

So, by Theorem 8, the given series is convergent and

$$\sum_{n=1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right) = 3 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} + \sum_{n=1}^{\infty} \frac{1}{2^n}$$

$$= 3 \cdot 1 + 1 = 4$$

NOTE 4 A finite number of terms doesn’t affect the convergence or divergence of a series. For instance, suppose that we were able to show that the series

$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$

is convergent. Since

$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1} = \frac{1}{2} + \frac{2}{9} + \frac{3}{28} + \sum_{n=4}^{\infty} \frac{n}{n^3 + 1}$$

it follows that the entire series $\sum_{n=1}^{\infty} n/(n^3 + 1)$ is convergent. Similarly, if it is known that the series $\sum_{n=N+1}^{\infty} a_n$ converges, then the full series

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{N} a_n + \sum_{n=N+1}^{\infty} a_n$$

is also convergent.
Exercises

1. (a) What is the difference between a sequence and a series? (b) What is a convergent series? What is a divergent series?

2. Explain what it means to say that \(\sum_{n=1}^{\infty} a_n = 5 \).

3–4 ■ Calculate the sum of the series \(\sum_{n=1}^{\infty} a_n \) whose partial sums are given.

3. \(s_n = 2 - 3(0.8)^n \)
4. \(s_n = \frac{n^2 - 1}{4n^2 + 1} \)

5–8 ■ Calculate the first eight terms of the sequence of partial sums correct to four decimal places. Does it appear that the series is convergent or divergent?

5. \(\sum_{n=1}^{\infty} \frac{1}{n^2} \)
6. \(\sum_{n=1}^{\infty} \frac{1}{n} \)
7. \(\sum_{n=1}^{\infty} \frac{n}{1 + \sqrt{n}} \)
8. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!} \)

9–14 ■ Find at least 10 partial sums of the series. Graph both the sequence of terms and the sequence of partial sums on the same screen. Does it appear that the series is convergent or divergent? If it is convergent, find the sum. If it is divergent, explain why.

9. \(\sum_{n=1}^{\infty} \frac{12}{(-5)^n} \)
10. \(\sum_{n=1}^{\infty} \cos n \)
11. \(\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 4}} \)
12. \(\sum_{n=1}^{\infty} \frac{7^{n+1}}{10^n} \)
13. \(\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) \)
14. \(\sum_{n=1}^{\infty} \frac{1}{n(n+2)} \)

15. Let \(a_n = \frac{2n}{3n + 1} \).

 (a) Determine whether \(\{a_n\} \) is convergent.

 (b) Determine whether \(\sum_{n=1}^{\infty} a_n \) is convergent.

16. (a) Explain the difference between \(\sum_{i=1}^{\infty} a_i \) and \(\sum_{i=1}^{\infty} a_j \).

 (b) Explain the difference between \(\sum_{i=1}^{\infty} a_i \) and \(\sum_{i=1}^{\infty} a_j \).

17–26 ■ Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.

17. \(3 - 4 + \frac{16}{9} - \frac{64}{27} + \cdots \)
18. \(4 + 3 + \frac{9}{2} + \frac{27}{8} + \cdots \)
19. \(10 - 2 + 0.4 - 0.08 + \cdots \)
20. \(2 + 0.5 + 0.125 + 0.03125 + \cdots \)

21. \(\sum_{n=1}^{\infty} 6(0.9)^{n-1} \)
22. \(\sum_{n=1}^{\infty} \frac{10^n}{(-9)^{n-1}} \)
23. \(\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n} \)
24. \(\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^{n+1}} \)

27–42 ■ Determine whether the series is convergent or divergent. If it is convergent, find its sum.

27. \(\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \cdots \)
28. \(\frac{1}{3} + \frac{2}{9} + \frac{1}{27} + \frac{2}{81} + \frac{1}{243} + \frac{2}{729} + \cdots \)

29. \(\sum_{n=1}^{\infty} \frac{n-1}{3n-1} \)
30. \(\sum_{k=1}^{\infty} \frac{k(k+2)}{(k+3)^2} \)
31. \(\sum_{n=1}^{\infty} \frac{1 + 2^n}{3^n} \)
32. \(\sum_{n=1}^{\infty} \frac{1 + 3^n}{2^n} \)

33. \(\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 1}} \)
34. \(\sum_{n=1}^{\infty} \left[(0.8)^{n-1} - (0.3)^n \right] \)

35. \(\sum_{n=1}^{\infty} \ln \left(\frac{n^2 + 1}{2n^2 + 1} \right) \)
36. \(\sum_{n=1}^{\infty} \frac{1}{1 + \left(\frac{2}{3} \right)^n} \)

37. \(\sum_{n=1}^{\infty} \frac{\pi^n}{3^n} \)
38. \(\sum_{n=1}^{\infty} (\cos 1)^n \)

39. \(\sum_{n=1}^{\infty} \arctan n \)
40. \(\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n} \right) \)

41. \(\sum_{n=1}^{\infty} \left(e^{1/n} + \frac{1}{n(n+1)} \right) \)
42. \(\sum_{n=1}^{\infty} \frac{e^n}{n^2} \)

43–48 ■ Determine whether the series is convergent or divergent by expressing \(s_n \) as a telescoping sum (as in Example 7). If it is convergent, find its sum.

43. \(\sum_{n=2}^{\infty} \frac{2}{n^2 - 1} \)
44. \(\sum_{n=1}^{\infty} \ln \frac{n}{n+1} \)

45. \(\sum_{n=1}^{\infty} \frac{3}{n(n + 3)} \)
46. \(\sum_{n=1}^{\infty} \left(\cos \frac{1}{n^2} - \cos \frac{1}{(n + 1)^2} \right) \)

47. \(\sum_{n=1}^{\infty} \left(e^{1/n} - e^{1/(n+1)} \right) \)
48. \(\sum_{n=1}^{\infty} \frac{1}{n^3 - n} \)
49. Let \(x = 0.99999 \ldots \)
 (a) Do you think that \(x < 1 \) or \(x = 1 \)?
 (b) Sum a geometric series to find the value of \(x \).
 (c) How many decimal representations does the number 1 have?
 (d) Which numbers have more than one decimal representation?

50. A sequence of terms is defined by
 \[a_n = 1 \quad a_n = (5 - n)a_{n-1} \]
 Calculate \(\sum_{n=1}^{\infty} a_n \).

51–56 Express the number as a ratio of integers.

51. \(0.5 = 0.8888 \ldots \)
52. \(0.46 = 0.46464646 \ldots \)
53. \(2.576 = 2.516516516 \ldots \)
54. \(10.1333 = 10.135353535 \ldots \)
55. \(1.5342 \)
56. \(7.12345 \)

57–63 Find the values of \(x \) for which the series converges.
Find the sum of the series for those values of \(x \).

57. \(\sum_{n=1}^{\infty} (-5)^n x^n \)
58. \(\sum_{n=1}^{\infty} (x + 2)^n \)
59. \(\sum_{n=0}^{\infty} (x - 2)^n \)
60. \(\sum_{n=0}^{\infty} (-4)^n (x - 5)^n \)
61. \(\sum_{n=0}^{\infty} \frac{2^n}{x^n} \)
62. \(\sum_{n=0}^{\infty} \frac{\sin nx}{3^n} \)
63. \(\sum_{n=0}^{\infty} e^{nt} \)

64. We have seen that the harmonic series is a divergent series whose terms approach 0. Show that
 \[\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n}\right) \]
 is another series with this property.

65–66 Use the partial fraction command on your CAS to find a convenient expression for the partial sum, and then use this expression to find the sum of the series. Check your answer by using the CAS to sum the series directly.

65. \(\sum_{n=1}^{\infty} \frac{3n^2 + 3n + 1}{(n^2 + n)^2} \)
66. \(\sum_{n=1}^{\infty} \frac{1}{n^3 - 5n^2 + 4n} \)

67. If the \(n \)th partial sum of a series \(\sum_{n=1}^{\infty} a_n \) is
 \[s_n = \frac{n - 1}{n + 1} \]
 find \(a_n \) and \(\sum_{n=1}^{\infty} a_n \).

68. If the \(n \)th partial sum of a series \(\sum_{n=1}^{\infty} a_n \) is \(s_n = 3 - n2^{-n} \),
 find \(a_n \) and \(\sum_{n=1}^{\infty} a_n \).

69. Drug dosing A patient takes 150 mg of a drug at the same time every day. Just before each tablet is taken, 5% of the drug remains in the body.
 (a) What quantity of the drug is in the body after the third tablet? After the \(n \)th tablet?
 (b) What quantity of the drug remains in the body in the long run?

70. Insulin injection After injection of a dose \(D \) of insulin, the concentration of insulin in a patient’s system decays exponentially and so it can be written as \(De^{-at} \), where \(t \) represents time in hours and \(a \) is a positive constant.
 (a) If a dose \(D \) is injected every \(T \) hours, write an expression for the sum of the residual concentrations just before the \((n + 1)\)st injection.
 (b) Determine the limiting pre-injection concentration.
 (c) If the concentration of insulin must always remain at or above a critical value \(C \), determine a minimal dosage \(D \) in terms of \(C, a, \) and \(T \).

71. When money is spent on goods and services, those who receive the money also spend some of it. The people receiving some of the twice-spent money will spend some of that, and so on. Economists call this chain reaction the multiplier effect. In a hypothetical isolated community, the local government begins the process by spending \(D \) dollars. Suppose that each recipient of spent money spends 100% of what he or she receives. The values \(c \) and \(s \) are called the marginal propensity to consume and the marginal propensity to save and, of course, \(c + s = 1 \).
 (a) Let \(S_n \) be the total spending that has been generated after \(n \) transactions. Find an equation for \(S_n \).
 (b) Show that \(\lim_{n \to \infty} S_n = kD \), where \(k = 1/s \). The number \(k \) is called the multiplier. What is the multiplier if the marginal propensity to consume is 80%?

 Note: The federal government uses this principle to justify deficit spending. Banks use this principle to justify lending a large percentage of the money that they receive in deposits.

72. A certain ball has the property that each time it falls from a height \(h \) onto a hard, level surface, it rebounds to a height \(rh \), where \(0 < r < 1 \). Suppose that the ball is dropped from an initial height of \(H \) meters.
 (a) Assuming that the ball continues to bounce indefinitely, find the total distance that it travels.
 (b) Calculate the total time that the ball travels. (Use the fact that the ball falls \(\frac{1}{2}gt^2 \) meters in \(t \) seconds.)
 (c) Suppose that each time the ball strikes the surface with velocity \(v \) it rebounds with velocity \(-kv\), where \(0 < k < 1 \). How long will it take for the ball to come to rest?

73. Find the value of \(c \) if
 \[\sum_{n=1}^{\infty} (1 + c)^{-n} = 2 \]

74. Find the value of \(c \) such that
 \[\sum_{n=0}^{\infty} e^{nc} = 10 \]
75. In Example 8 we showed that the harmonic series is divergent. Here we outline another method, making use of the fact that $e^x > 1 + x$ for any $x > 0$.

If s_n is the nth partial sum of the harmonic series, show that $e^{s_n} > n + 1$. Why does this imply that the harmonic series is divergent?

76. Graph the curves $y = x^n$, $0 \leq x \leq 1$, for $n = 0, 1, 2, 3, 4, \ldots$ on a common screen. By finding the areas between successive curves, give a geometric demonstration of the fact, shown in Example 7, that

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1
$$

77. The figure shows two circles C and D of radius 1 that touch at P. The line T is a common tangent line; C_1 is the circle that touches C, D, and T; C_2 is the circle that touches C, D, and C_1; C_3 is the circle that touches C, D, and C_2. This procedure can be continued indefinitely and produces an infinite sequence of circles (C_n). Find an expression for the diameter of C_n and thus provide another geometric demonstration of Example 7.

78. A right triangle ABC is given with $\angle A = \theta$ and $|AC| = b$. CD is drawn perpendicular to AB, DE is drawn perpendicular to BC, $EF \perp AB$, and this process is continued indefinitely, as shown in the figure. Find the total length of all the perpendiculars

$$
|CD| + |DE| + |EF| + |FG| + \cdots
$$

in terms of b and θ.

79. What is wrong with the following calculation?

$$
0 = 0 + 0 + 0 + \cdots
= (1 - 1) + (1 - 1) + (1 - 1) + \cdots
= 1 - 1 + 1 - 1 + 1 - 1 + \cdots
= 1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + \cdots
= 1 + 0 + 0 + 0 + \cdots = 1
$$

(Guido Ubaldus thought that this proved the existence of God because “something has been created out of nothing.”)

80. Suppose that $\sum_{n=1}^{\infty} a_n (a_n \neq 0)$ is known to be a convergent series. Prove that $\sum_{n=1}^{\infty} \frac{1}{a_n}$ is a divergent series.

81. Prove part (i) of Theorem 8.

82. If Σa_n is divergent and $c \neq 0$, show that Σca_n is divergent.

83. If Σa_n is convergent and Σb_n is divergent, show that the series $\Sigma (a_n + b_n)$ is divergent. [Hint: Argue by contradiction.]

84. If Σa_n and Σb_n are both divergent, is $\Sigma (a_n + b_n)$ necessarily divergent?

85. Suppose that a series Σa_n has positive terms and its partial sums s_n satisfy the inequality $s_n \leq 1000$ for all n. Explain why Σa_n must be convergent.

86. The Fibonacci sequence is defined by the equations

$$
f_1 = 1, \quad f_2 = 1, \quad f_n = f_{n-1} + f_{n-2} \quad n \geq 3.
$$

Show that each of the following statements is true.

(a) $\frac{1}{f_{n-1}f_{n+1}} = \frac{1}{f_{n-1}f_n} - \frac{1}{f_nf_{n+1}}$

(b) $\sum_{n=2}^{\infty} \frac{1}{f_{n-1}f_n} = 1$

(c) $\sum_{n=2}^{\infty} \frac{f_n}{f_{n-1}f_{n+1}} = 2$

87. The Cantor set, named after the German mathematician Georg Cantor (1845–1918), is constructed as follows. We start with the closed interval $[0, 1]$ and remove the open interval $(\frac{1}{3}, \frac{2}{3})$. That leaves the two intervals $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$ and we remove the open middle third of each. Four intervals remain and again we remove the open middle third of each of them. We continue this procedure indefinitely, at each step removing the open middle third of every interval that remains from the preceding step. The Cantor set consists of the numbers that remain in $[0, 1]$ after all those intervals have been removed.

(a) Show that the total length of all the intervals that are removed is 1. Despite that, the Cantor set contains infinitely many numbers. Give examples of some numbers in the Cantor set.

(b) The Sierpinski carpet is a two-dimensional counterpart of the Cantor set. It is constructed by removing the center one-ninth of a square of side 1, then removing the
centers of the eight smaller remaining squares, and so on.
(The figure shows the first three steps of the construction.)
Show that the sum of the areas of the removed squares
is 1. This implies that the Sierpinski carpet has area 0.

88. (a) A sequence \(\{a_n\} \) is defined recursively by the equation
\[
a_n = \frac{1}{2}(a_{n-1} + a_{n-2}) \quad \text{for } n \geq 3,
\]
where \(a_1 \) and \(a_2 \) can be any real numbers. Experiment with various values of \(a_1 \) and \(a_2 \)
and use your calculator to guess the limit of the sequence.
(b) Find \(\lim_{n \to \infty} a_n \) in terms of \(a_1 \) and \(a_2 \) by expressing
\[
a_{n+1} - a_n \quad \text{in terms of } a_2 - a_1 \quad \text{and summing a series.}
\]

89. Consider the series \(\sum_{n=1}^{\infty} \frac{n}{(n + 1)!} \).
(a) Find the partial sums \(s_1, s_2, s_3, \) and \(s_4 \). Do you recognize the
denominators? Use the pattern to guess a formula for \(s_n \).
(b) Use mathematical induction to prove your guess.
(c) Show that the given infinite series is convergent, and find
its sum.

90. In the figure at the right there are infinitely many circles
approaching the vertices of an equilateral triangle, each circle
touching other circles and sides of the triangle. If the triangle
has sides of length 1, find the total area occupied by the circles.

1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.
(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.

3. 2
5. 1, 1.125, 1.1620, 1.1777, 1.1857, 1.1903, 1.1932, 1.1952; C
7. 0.5, 1.3284, 2.4265, 3.7598, 5.3049, 7.0443, 8.9644, 11.0540; D
9. \(-2.40000, -1.92000, -2.01600, -1.99680, -2.00006, -1.99987, -2.00003, -1.99999, -2.00000, -2.00000; \) convergent, sum = \(-2\)

11. 0.44721, 1.15432, 1.98637, 2.88080, 3.80927, 4.75796, 5.71948, 6.68962, 7.66581, 8.66463; divergent

13. 0.29289, 0.42265, 0.50000, 0.55279, 0.59175, 0.62204, 0.64645, 0.66667, 0.68377, 0.69849; convergent, sum = 1

15. (a) Yes (b) No 17. D 19. \(\frac{5}{9}\) 21. 60
23. 1 25. D 27. D 29. D
31. \(\frac{3}{5}\) 33. D 35. D
37. D 39. D 41. \(\frac{x}{e - e}\) 43. \(\frac{\sqrt{2}}{2}\) 45. \(\frac{11}{9}\)
47. \(e - 1\)
49. (b) 1 (c) 2 (d) All rational numbers with a terminating decimal representation, except 0

51. \(\frac{5}{7}\) 53. \(\frac{22}{33}\) 55. 5063/3300
57. \(-\frac{1}{5} \leq x < \frac{1}{5}\), \(-\frac{5x}{1 + 5x}\)
59. \(-1 < x < 5\), \(\frac{3}{5 - x}\)
61. \(x > 2\) or \(x < -2\), \(\frac{x}{x - 2}\)
63. \(x < 0\), \(\frac{1}{1 - e^x}\)
65. 1
67. \(a_n = 0, a_n = \frac{2}{n(n + 1)}\) for \(n > 1\), sum = 1
69. (a) 157.875 mg; \(\frac{1000}{10000}(1 - 0.05^5)\) (b) 157.895 mg
71. (a) \(S_n = \frac{D(1 - e^n)}{1 - e}\) (b) 5
73. \(\frac{1}{2}(\sqrt{3} - 1)\)
77. \(\frac{1}{n(n + 1)}\) 79. The series is divergent.
85. \(\{a_n\}\) is bounded and increasing.
87. (a) 0, \(\frac{2}{5}, \frac{1}{5}, \frac{1}{5}, \frac{7}{5}, \frac{7}{5}, 1\)
89. (a) \(\frac{1}{2}, \frac{1}{2}, \frac{10}{5}, \frac{11}{5}, \frac{n + 1}{n + 1}, \frac{1}{n + 1}\) (c) 1
1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.

(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.

3. \(\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} [2 - 3(0.8)^n] = \lim_{n \to \infty} 2 - 3 \lim_{n \to \infty} (0.8)^n = 2 - 3(0) = 2 \)

5. For \(\sum_{n=1}^{\infty} \frac{1}{n^3} a_n = \frac{1}{n^3} \), \(s_1 = a_1 = \frac{1}{1^3} = 1 \), \(s_2 = s_1 + a_2 = 1 + \frac{1}{2^3} = 1.125 \), \(s_3 = s_2 + a_3 \approx 1.1620 \),

\[s_4 = s_3 + a_4 \approx 1.1777, \ s_5 = s_4 + a_5 \approx 1.1857, \ s_6 = s_5 + a_6 \approx 1.1903, \ s_7 = s_6 + a_7 \approx 1.1932, \] and \(s_8 = s_7 + a_8 \approx 1.1952 \). It appears that the series is convergent.

7. For \(\sum_{n=1}^{\infty} \frac{n}{1 + \sqrt{n}} a_n = \frac{n}{1 + \sqrt{n}} \), \(s_1 = a_1 = \frac{1}{1 + \sqrt{1}} = 0.5 \), \(s_2 = s_1 + a_2 = 0.5 + \frac{2}{1 + \sqrt{2}} \approx 1.3284 \),

\[s_3 = s_2 + a_3 \approx 2.4265, \ s_4 = s_3 + a_4 \approx 3.7598, \ s_5 = s_4 + a_5 \approx 5.3049, \ s_6 = s_5 + a_6 \approx 7.0443, \] \(s_7 = s_6 + a_7 \approx 8.9644, \ s_8 = s_7 + a_8 \approx 11.0540 \). It appears that the series is divergent.

9.

<table>
<thead>
<tr>
<th>n</th>
<th>(s_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.40000</td>
</tr>
<tr>
<td>2</td>
<td>-1.92000</td>
</tr>
<tr>
<td>3</td>
<td>-2.01600</td>
</tr>
<tr>
<td>4</td>
<td>-1.99680</td>
</tr>
<tr>
<td>5</td>
<td>-2.00064</td>
</tr>
<tr>
<td>6</td>
<td>-1.99987</td>
</tr>
<tr>
<td>7</td>
<td>-2.00003</td>
</tr>
<tr>
<td>8</td>
<td>-1.99999</td>
</tr>
<tr>
<td>9</td>
<td>-2.00000</td>
</tr>
<tr>
<td>10</td>
<td>-2.00000</td>
</tr>
</tbody>
</table>

From the graph and the table, it seems that the series converges to \(-2\). In fact, it is a geometric series with \(a = -2.4 \) and \(r = \frac{1}{2} \), so its sum is \(\sum_{n=1}^{\infty} \frac{12}{(-5)^n} = \frac{-2.4}{1 - (-\frac{1}{5})} = -2.4 \cdot \frac{1}{2} = -2 \).

Note that the dot corresponding to \(n = 1 \) is part of both \(\{a_n\} \) and \(\{s_n\} \).

TI-86 Note: To graph \(\{a_n\} \) and \(\{s_n\} \), set your calculator to Param mode and DrawDot mode. (DrawDot is under GRAPH, MORE, FORMT (F3).) Now under \(E(t) = \) make the assignments: \(xt1=t, \ yt1=12/(-5)^t, \ xt2=t, \ yt2=\text{sum seq}(yt1,t,1,t,1) \). (sum and seq are under LIST, OPS (F5), MORE.) Under WIND use \(1,10,1,0,10,1,-3,1,1 \) to obtain a graph similar to the one above. Then use TRACE (F4) to see the values.
11. \[\begin{array}{|c|c|} \hline n & s_n \\ \hline 1 & 0.44721 \\ 2 & 1.15432 \\ 3 & 1.98637 \\ 4 & 2.88080 \\ 5 & 3.80927 \\ 6 & 4.75796 \\ 7 & 5.71948 \\ 8 & 6.68962 \\ 9 & 7.66581 \\ 10 & 8.64639 \\ \hline \end{array} \]

The series \(\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 4}} \) diverges, since its terms do not approach 0.

13. \[\begin{array}{|c|c|} \hline n & s_n \\ \hline 1 & 0.29289 \\ 2 & 0.42265 \\ 3 & 0.50000 \\ 4 & 0.55279 \\ 5 & 0.59175 \\ 6 & 0.62204 \\ 7 & 0.64645 \\ 8 & 0.66667 \\ 9 & 0.68377 \\ 10 & 0.69849 \\ \hline \end{array} \]

From the graph and the table, it seems that the series converges.

\[
\sum_{n=1}^{b} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) = \left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}} \right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} \right) + \cdots + \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) = 1 - \frac{1}{\sqrt{k+1}}.
\]

so \(\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) = \lim_{k \to \infty} \left(1 - \frac{1}{\sqrt{k+1}} \right) = 1. \]

15. (a) \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n}{3n+1} = \frac{2}{3} \), so the sequence \(\{a_n\} \) is convergent by (2.1.1).

(b) Since \(\lim_{n \to \infty} a_n = \frac{2}{3} \neq 0 \), the series \(\sum_{n=1}^{\infty} a_n \) is divergent by the Test for Divergence.

17. \(3 - 4 + \frac{16}{9} - \frac{64}{9} + \cdots \) is a geometric series with ratio \(r = -\frac{4}{3} \). Since \(|r| = \frac{4}{3} > 1 \), the series diverges.

19. \(10 - 2 + 0.4 - 0.08 + \cdots \) is a geometric series with ratio \(-\frac{2}{5} = -\frac{1}{b} \). Since \(|r| = \frac{1}{b} < 1 \), the series converges to

\[
a = \frac{10}{1 - (-1/5)} = \frac{10}{6/5} = \frac{50}{6} = \frac{25}{3}.
\]

21. \(\sum_{n=1}^{\infty} 6(0.9)^{n-1} \) is a geometric series with first term \(a = 6 \) and ratio \(r = 0.9 \). Since \(|r| = 0.9 < 1 \), the series converges to

\[
a = \frac{6}{1 - 0.9} = \frac{6}{0.1} = 60.
\]
23. \(\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n} = \frac{1}{4} \sum_{n=1}^{\infty} \left(-\frac{3}{4} \right)^{n-1} \). The latter series is geometric with \(a = 1 \) and ratio \(r = -\frac{3}{4} \). Since \(|r| = \frac{3}{4} < 1 \), it converges to \(\frac{1}{1 - (-3/4)} = \frac{4}{7} \). Thus, the given series converges to \(\frac{1}{7} \).

25. \(\sum_{n=0}^{\infty} \frac{n^n}{3^n} = \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{n}{3} \right)^n \) is a geometric series with ratio \(r = \frac{n}{3} \). Since \(|r| > 1 \), the series diverges.

27. \(\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \cdots = \sum_{n=1}^{\infty} \frac{1}{3n} = \frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n} \). This is a constant multiple of the divergent harmonic series, so it diverges.

29. \(\sum_{n=1}^{\infty} \frac{n - 1}{3n - 1} \) diverges by the Test for Divergence since \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n - 1}{3n - 1} = \frac{1}{3} \neq 0 \).

31. Converges.

\[
\sum_{n=1}^{\infty} \frac{1 + 2^n}{3^n} = \sum_{n=1}^{\infty} \left(\frac{1}{3^n} + \frac{2^n}{3^n} \right) = \sum_{n=1}^{\infty} \left[\left(\frac{1}{3} \right)^n + \left(\frac{2}{3} \right)^n \right] \quad \text{[sum of two convergent geometric series]}
\]

\[
= \frac{1/3}{1 - 1/3} + \frac{2/3}{1 - 2/3} = \frac{1}{2} + 2 = \frac{5}{2}
\]

33. \(\sum_{n=1}^{\infty} \sqrt[n]{2} = 2 + \sqrt[3]{2} + \sqrt[4]{2} + \sqrt[5]{2} + \cdots \) diverges by the Test for Divergence since

\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt[n]{2} = \lim_{n \to \infty} 2^{1/n} = 2^0 = 1 \neq 0.
\]

35. \(\sum_{n=1}^{\infty} \ln \left(\frac{n^2 + 1}{2n^2 + 1} \right) \) diverges by the Test for Divergence since

\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} \ln \left(\frac{n^2 + 1}{2n^2 + 1} \right) = \ln \left(\lim_{n \to \infty} \frac{n^2 + 1}{2n^2 + 1} \right) = \ln \frac{1}{2} \neq 0.
\]

37. \(\sum_{k=0}^{\infty} \left(\frac{1}{2} \right)^k \) is a geometric series with ratio \(r = \frac{1}{2} \approx 1.047 \). It diverges because \(|r| \geq 1 \).

39. \(\sum_{n=1}^{\infty} \arctan n \) diverges by the Test for Divergence since \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} \arctan n = \frac{\pi}{2} \neq 0 \).

41. \(\sum_{n=1}^{\infty} \frac{1}{e^n} = \sum_{n=1}^{\infty} \left(\frac{1}{e} \right)^n \) is a geometric series with first term \(a = \frac{1}{e} \) and ratio \(r = \frac{1}{e} \). Since \(|r| = \frac{1}{e} < 1 \), the series converges to \(\frac{1}{1 - 1/e} = \frac{1/e}{1 - 1/e} = \frac{1}{e - 1} \). By Example 7, \(\sum_{n=1}^{\infty} \frac{1}{n(n + 1)} = 1 \). Thus, by Theorem 8(ii),

\[
\sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n + 1)} \right) = \sum_{n=1}^{\infty} \frac{1}{e^n} + \sum_{n=1}^{\infty} \frac{1}{n(n + 1)} = \frac{1}{e - 1} + 1 = \frac{1}{e - 1} + \frac{1 - e}{e - 1} = \frac{e}{e - 1}.
\]
43. Using partial fractions, the partial sums of the series \(\sum_{n=2}^{\infty} \frac{2}{n^2 - 1} \) are

\[
s_n = \sum_{i=2}^{n} \frac{2}{(i-1)(i+1)} = \sum_{i=2}^{n} \left(\frac{1}{i-1} - \frac{1}{i+1} \right)
\]

\[
= \left(1 - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \cdots + \left(\frac{1}{n-3} - \frac{1}{n-1}\right) + \left(\frac{1}{n-2} - \frac{1}{n}\right)
\]

This sum is a telescoping series and \(s_n = 1 + \frac{1}{2} - \frac{1}{n-1} - \frac{1}{n} \).

Thus, \(\frac{2}{n^2 - 1} = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 + \frac{1}{2} - \frac{1}{n-1} - \frac{1}{n}\right) = \frac{3}{2} \).

45. For the series \(\sum_{n=1}^{\infty} \frac{3}{n(n+3)} \), \(s_n = \sum_{i=1}^{n} \frac{3}{i(i+3)} = \sum_{i=1}^{n} \left(\frac{1}{i} - \frac{1}{i+3} \right) \) [using partial fractions]. The latter sum is

\[
(1 + \frac{1}{2} - \frac{1}{3}) + (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{5}) + \cdots + \left(\frac{1}{n-3} - \frac{1}{n-1}\right) + \left(\frac{1}{n-2} - \frac{1}{n+1}\right) + \left(\frac{1}{n-1} - \frac{1}{n+2}\right) + \left(\frac{1}{n} - \frac{1}{n+3}\right)
\]

\[
= 1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3} \quad \text{[telescoping series]}
\]

Thus, \(\frac{3}{n(n+3)} = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3}\right) = 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6} \). Converges

47. For the series \(\sum_{n=1}^{\infty} \left(e^{1/n} - e^{1/(n+1)} \right) \),

\[
s_n = \sum_{i=1}^{n} \left(e^{1/i} - e^{1/(i+1)} \right) = \left(e^1 - e^{1/2}\right) + \left(e^{1/2} - e^{1/3}\right) + \cdots + \left(e^{1/n} - e^{1/(n+1)}\right) = e - e^{1/(n+1)}
\]

[telescoping series]

Thus, \(\sum_{n=1}^{\infty} \left(e^{1/n} - e^{1/(n+1)} \right) = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(e - e^{1/(n+1)}\right) = e - e^0 = e - 1 \). Converges

49. (a) Many people would guess that \(x < 1 \), but note that \(x \) consists of an infinite number of 9s.

(b) \(x = 0.99999 \ldots = \frac{9}{10} + \frac{9}{1000} + \frac{9}{10000} + \cdots = \sum_{n=1}^{\infty} \frac{9}{10^n} \), which is a geometric series with \(a_1 = 0.9 \) and \(r = 0.1 \). Its sum is \(\frac{0.9}{1-0.1} = \frac{0.9}{0.9} = 1 \), that is, \(x = 1 \).

(c) The number 1 has two decimal representations, 1.00000 … and 0.99999 …

(d) Except for 0, all rational numbers that have a terminating decimal representation can be written in more than one way. For example, 0.5 can be written as 0.49999 … as well as 0.50000….

51. \(\overline{0.3} = \frac{8}{10} + \frac{8}{10^2} + \cdots \) is a geometric series with \(a = \frac{8}{10} \) and \(r = \frac{1}{10} \). It converges to \(\frac{a}{1-r} = \frac{8/10}{1-1/10} = \frac{8}{9} \).

53. \(2.5\overline{16} = 2 + \frac{516}{10^3} + \frac{516}{10^6} + \cdots \). Now \(\frac{516}{10^3} + \frac{516}{10^6} + \cdots \) is a geometric series with \(a = \frac{516}{10^3} \) and \(r = \frac{1}{10^3} \). It converges to

\[
\frac{a}{1-r} = \frac{516}{10^3} + \frac{516}{10^6} \cdot \frac{999}{10^3} = \frac{516}{999} \cdot 999 = \frac{516}{333} = 1.5.
\]
55. \(1.53 + \frac{42}{10^4} + \frac{42}{10^8} + \cdots\) is a geometric series with \(a = \frac{42}{10^4}\) and \(r = \frac{1}{10^2}\).

It converges to \(\frac{a}{1-r} = \frac{42/10^4}{1 - 1/10^2} = \frac{42/10^4}{99/10^2} = \frac{42}{9900}\).

Thus, \(1.53 + \frac{42}{9900} + \frac{42}{9900} + \cdots\) converges to \(\frac{153}{100} + \frac{15,147}{9900} + \frac{15,189}{9900} + \cdots\) or \(\frac{5063}{3300}\).

57. \(\sum_{n=1}^{\infty} (-5)^n x^n = \sum_{n=1}^{\infty} (-5x)^n\) is a geometric series with \(r = -5x\), so the series converges \(\iff |r| < 1\) \(\iff |-5x| < 1 \iff |x| < \frac{1}{5}\), that is, \(-\frac{1}{5} < x < \frac{1}{5}\). In that case, the sum of the series is \(\frac{a}{1-r} = \frac{-5x}{1 - (-5x)} = \frac{-5x}{1 + 5x}\).

59. \(\sum_{n=0}^{\infty} \frac{(x-2)^n}{3^n} = \sum_{n=0}^{\infty} \left(\frac{x-2}{3}\right)^n\) is a geometric series with \(r = \frac{x-2}{3}\), so the series converges \(\iff |r| < 1\) \(\iff \left|\frac{x-2}{3}\right| < 1 \iff -1 < x < 2 < 3 \iff -3 < x < 5\). In that case, the sum of the series is \(\frac{a}{1-r} = \frac{1}{1 - \frac{x-2}{3}} = \frac{1}{3 - \frac{x-2}{3}} = \frac{3}{5-x}\).

61. \(\sum_{n=0}^{\infty} \frac{2^n}{x^n} = \sum_{n=0}^{\infty} \left(\frac{2}{x}\right)^n\) is a geometric series with \(r = \frac{2}{x}\), so the series converges \(\iff |r| < 1\) \(\iff \left|\frac{2}{x}\right| < 1 \iff 2 < |x| \iff x > 2\) or \(x < -2\). In that case, the sum of the series is \(\frac{a}{1-r} = \frac{1}{1 - \frac{2}{x}} = \frac{x}{x-2}\).

63. \(\sum_{n=0}^{\infty} e^{nx} = \sum_{n=0}^{\infty} (e^x)^n\) is a geometric series with \(r = e^x\), so the series converges \(\iff |r| < 1\) \(\iff |e^x| < 1 \iff -1 < e^x < 1 \iff 0 < e^x < 1 \iff x < 0\). In that case, the sum of the series is \(\frac{a}{1-r} = \frac{1}{1 - e^x}\).

65. After defining \(f\), we use \(\text{convert}(f, \text{parfrac});\) in Maple, \(\text{Apart}\) in Mathematica, or \(\text{Expand}\) and \(\text{Rational}\) and \(\text{Simplify}\) in Derive to find that the general term is \(\frac{3n^2 + 3n + 1}{(n^2 + n)^3} = \frac{1}{n^3} - \frac{1}{(n+1)^3}\). So the \(n\)th partial sum is

\[s_n = \sum_{k=1}^{n} \left(\frac{1}{k^3} - \frac{1}{(k+1)^3}\right) = \left(1 - \frac{1}{2^3}\right) + \left(\frac{1}{2^3} - \frac{1}{3^3}\right) + \cdots + \left(\frac{1}{n^3} - \frac{1}{(n+1)^3}\right) = 1 - \frac{1}{(n+1)^3}\]

The series converges to \(\lim_{n \to \infty} s_n = 1\). This can be confirmed by directly computing the sum using \(\text{sum}(f, n=1..\infty);\) (in Maple), \(\text{Sum}[f,\{n,1,\infty}\}]\) (in Mathematica), or \(\text{Calculus}\) \(\text{Sum}\) (from 1 to \(\infty\)) and \(\text{Simplify}\) (in Derive).

67. For \(n = 1, a_1 = 0\) since \(a_1 = 0\). For \(n > 1\),

\[a_n = s_n - s_{n-1} = \frac{n}{n+1} - (\frac{n-1}{n} - 1) = \frac{(n-1)n - (n+1)(n-2)}{(n+1)n} = \frac{2}{n(n+1)}\]

Also, \(\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - 1/n}{1+1/n} = 1\).
69. (a) The quantity of the drug in the body after the first tablet is 150 mg. After the second tablet, there is 150 mg plus 5% of the first 150-mg tablet, that is, \([150 + 150(0.05)]\) mg. After the third tablet, the quantity is
\[150 + 150(0.05) + 150(0.05)^2\] mg. After \(n\) tablets, the quantity (in mg) is
\[150 + 150(0.05) + \cdots + 150(0.05)^{n-1}\]. We can use Formula 3 to write this as
\[\frac{150(1 - 0.05^n)}{1 - 0.05} = \frac{3000}{19}(1 - 0.05^n)\].

(b) The number of milligrams remaining in the body in the long run is
\[\lim_{n \to \infty} \left[\frac{3000}{19}(1 - 0.05^n)\right] = \frac{3000}{19}(1 - 0) \approx 157.895\], only 0.02 mg more than the amount after 3 tablets.

71. (a) The first step in the chain occurs when the local government spends \(D\) dollars. The people who receive it spend a fraction \(c\) of those \(D\) dollars, that is, \(Dc\) dollars. Those who receive the \(Dc\) dollars spend a fraction \(c\) of it, that is, \(Dc^2\) dollars. Continuing in this way, we see that the total spending after \(n\) transactions is
\[S_n = D + Dc + Dc^2 + \cdots + Dc^{n-1} = \frac{D(1 - c^n)}{1 - c}\] by (3).

(b) \(\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{D(1 - c^n)}{1 - c} = \frac{D}{1 - c} \lim_{n \to \infty} (1 - c^n) = \frac{D}{1 - c} \left[\text{since } 0 < c < 1 \Rightarrow \lim_{n \to \infty} c^n = 0\right]
= \frac{D}{s} \left[\text{since } c + s = 1 \Rightarrow kD \text{ [since } k = 1/s]\right]

If \(c = 0.8\), then \(s = 1 - c = 0.2\) and the multiplier is \(s = 1/s = 5\).

73. \(\sum_{n=2}^{\infty} (1 + c)^{-n}\) is a geometric series with \(a = (1 + c)^{-2}\) and \(r = (1 + c)^{-1}\), so the series converges when
\[|(1 + c)^{-1}| < 1 \iff |1 + c| > 1 \iff 1 + c > 1 \text{ or } 1 + c < -1 \iff c > 0 \text{ or } c < -2\]. We compute the sum of the series and set it equal to 2:
\[\frac{(1 + c)^{-2}}{1 - (1 + c)^{-1}} = 2 \iff \left(\frac{1}{1 + c}\right)^2 = 2 - 2\left(\frac{1}{1 + c}\right) \iff 1 = 2(1 + c)^2 - 2(1 + c) \iff 2c^2 + 2c - 1 = 0 \iff c = \frac{-2 + \sqrt{4 - 4}}{2} = \frac{-2 + \sqrt{\frac{1}{2}}}{2}\). However, the negative root is inadmissible because \(-2 < \frac{-2 + \sqrt{1}}{2} < 0\).

So \(c = \frac{\sqrt{2} - 1}{2}\).

75. \(e^n = e^{1 + \frac{1}{3} + \frac{1}{2} + \cdots + \frac{1}{2^n}} = e^1e^{1/2}e^{1/3} \cdots e^{1/n} > (1 + 1) \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{3}\right) \cdots \left(1 + \frac{1}{n}\right)\) \([e^n > 1 + x]\)
= \frac{2 \cdot 3 \cdot 4 \cdots n + 1}{1 \cdot 2 \cdot 3 \cdots n} = n + 1
Thus, \(e^n > n + 1\) and \(\lim_{n \to \infty} e^n = \infty\). Since \(\{s_n\}\) is increasing, \(\lim_{n \to \infty} s_n = \infty\), implying that the harmonic series is divergent.
77. Let \(d_n \) be the diameter of \(C_n \). We draw lines from the centers of the \(C_i \) to the center of \(D \) (or \(C \)), and using the Pythagorean Theorem, we can write
\[
1^2 + (1 - \frac{1}{2}d_1)^2 = (1 + \frac{1}{2}d_1)^2 \quad \Leftrightarrow \\
1 = (1 + \frac{1}{2}d_1)^2 - (1 - \frac{1}{2}d_1)^2 = 2d_1 \quad \text{[difference of squares]} \quad \Rightarrow \quad d_1 = \frac{1}{2}.
\]
Similarly,
\[
1 = (1 + \frac{1}{2}d_2)^2 - (1 - \frac{1}{2}d_2)^2 = 2d_2 + 2d_1 - d_1^2 - d_1d_2 = (2 - d_1)(d_1 + d_2) \quad \Leftrightarrow \\
d_2 = \frac{1}{2} - d_1 = (1 - d_1)^2.
\]
Substituting this into our formula for \(d_{n+1} \), we get \(d_{n+1} = \left[1 - \frac{n}{n+1} \right]^2 = \frac{1}{(n+1)(n+2)} \), and the induction is complete.

Now, we observe that the partial sums \(\sum_{i=1}^n d_i \) of the diameters of the circles approach 1 as \(n \to \infty \); that is,
\[
\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1, \text{ which is what we wanted to prove.}
\]

79. The series \(1 - 1 + 1 - 1 + 1 - \cdots \) diverges (geometric series with \(r = -1 \)) so we cannot say that \(0 = 1 - 1 + 1 - 1 + \cdots \).

81. \(\sum_{n=1}^{\infty} c a_n = \lim_{n \to \infty} \sum_{i=1}^{n} c a_i = \lim_{n \to \infty} c \sum_{i=1}^{n} a_i = c \lim_{n \to \infty} \sum_{i=1}^{n} a_i = c \sum_{n=1}^{\infty} a_n \), which exists by hypothesis.

83. Suppose on the contrary that \(\sum (a_n + b_n) \) converges. Then \(\sum (a_n + b_n) \) and \(\sum a_n \) are convergent series. So by Theorem 8(iii), \(\sum [(a_n + b_n) - a_n] \) would also be convergent. But \(\sum [(a_n + b_n) - a_n] = \sum b_n \), a contradiction, since \(\sum b_n \) is given to be divergent.

85. The partial sums \(\{ s_n \} \) form an increasing sequence, since \(s_n - s_{n-1} = a_n > 0 \) for all \(n \). Also, the sequence \(\{ s_n \} \) is bounded since \(s_n \leq 1000 \) for all \(n \). So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series \(\sum a_n \) is convergent.
87. (a) At the first step, only the interval \((\frac{1}{3}, \frac{2}{3})\) (length \(\frac{1}{3}\)) is removed. At the second step, we remove the intervals \((\frac{1}{3}, \frac{2}{3})\) and \((\frac{1}{3}, \frac{2}{3})\), which have a total length of \(2 \cdot \left(\frac{1}{3}\right)^2\). At the third step, we remove \(2^2\) intervals, each of length \(\left(\frac{1}{3}\right)^3\). In general, at the \(n\)th step we remove \(2^{n-1}\) intervals, each of length \(\left(\frac{1}{3}\right)^n\), for a length of \(2^{n-1} \cdot \left(\frac{1}{3}\right)^n = \frac{2}{3^n}\). Thus, the total length of all removed intervals is

\[
\sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} = \frac{1/3}{1 - 2/3} = \frac{1}{1} = 1 \quad \text{[geometric series with } a = \frac{1}{3} \text{ and } r = \frac{2}{3}]\.
\]

Notice that at the \(n\)th step, the leftmost interval that is removed is \(\left(\frac{1}{3^n}, \frac{2}{3^n}\right)\), so we never remove 0, and 0 is in the Cantor set. Also, the rightmost interval removed is \(1 - \left(\frac{1}{3}\right)^n\), so 1 is never removed. Some other numbers in the Cantor set are \(\frac{1}{7}, \frac{1}{10}, \frac{1}{13}, \frac{1}{16}, \frac{1}{19}, \text{ and } \frac{1}{22}\).

(b) The area removed at the first step is \(\frac{1}{3}\); at the second step, \(8 \cdot \left(\frac{1}{3}\right)^2\); at the third step, \(8^2 \cdot \left(\frac{1}{3}\right)^3\). In general, the area removed at the \(n\)th step is \(8^{n-1} \cdot \left(\frac{1}{3}\right)^n\), so the total area of all removed squares is

\[
\frac{1}{9} \sum_{n=1}^{\infty} \frac{8^{n-1}}{3^n} = \frac{1/9}{1 - 8/9} = 1.
\]

89. (a) For \(n \geq 1\),

\[
s_1 = \frac{1}{1 \cdot 2} = \frac{1}{2}, \quad s_2 = \frac{1}{2} + \frac{2}{1 \cdot 2 \cdot 3} = \frac{5}{6}, \quad s_3 = \frac{5}{6} + \frac{6}{1 \cdot 2 \cdot 3 \cdot 4} = \frac{23}{24}.
\]

The denominators are \((n + 1)!\), so a guess would be \(s_n = \frac{(n+1)!-1}{(n+1)!}\).

(b) For \(n = 1\), \(s_1 = \frac{2!-1}{2!} = \frac{1}{2}\), so the formula holds for \(n = 1\). Assume \(s_k = \frac{(k+1)!-1}{(k+1)!}\). Then

\[
s_{k+1} = \frac{(k+1)!-1}{(k+1)!} + \frac{k+1}{(k+2)!} = \frac{(k+1)!-1}{(k+1)!} + \frac{k+1}{(k+1)!(k+2)} = \frac{k+1}{(k+2)!} - \frac{1}{(k+2)!} = \frac{(k+2)! - (k+2) + 1}{(k+2)!}
\]

Thus, the formula is true for \(n = k + 1\). So by induction, the guess is correct.

(c) \(\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{(n+1)!-1}{(n+1)!} = \lim_{n \to \infty} \left[1 - \frac{1}{(n+1)!}\right] = 1\) and so \(\sum_{n=1}^{\infty} \frac{n}{(n+1)!} = 1\).