
Series

1

What do we mean when we express a number as an infinite decimal? For instance, what 
does it mean to write

� − 3.14159 26535 89793 23846 26433 83279 50288 . . .

The convention behind our decimal notation is that any number can be written as an infi-
nite sum. Here it means that

� − 3 1
1

10
1

4

102 1
1

103 1
5

104 1
9

105 1
2

106 1
6

107 1
5

108 1 ∙ ∙ ∙

where the three dots s∙ ∙ ∙d indicate that the sum continues forever, and the more terms we 
add, the closer we get to the actual value of �.

In general, if we try to add the terms of an infinite sequence han jn−1
`  we get an expression 

of the form

a1 1 a2 1 a3 1 ∙  ∙  ∙ 1 an 1 ∙  ∙  ∙

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

o
`

n−1
 an         or       o  an

Does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

1 1 2 1 3 1 4 1 5 1 ∙ ∙ ∙ 1 n 1 ∙ ∙ ∙

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 21, . . . and, 
after the nth term, we get nsn 1 1dy2, which becomes very large as n increases.

However, if we start to add the terms of the series

1

2
1

1

4
1

1

8
1

1

16
1

1

32
1

1

64
1 ∙ ∙ ∙ 1

1

2n 1 ∙ ∙ ∙

we get 1
2, 3

4, 7
8, 15

16, 31
32, 63

64, . . . , 1 2 1y2n, . . . . The table shows that as we add more and 
more terms, these partial sums become closer and closer to 1. In fact, by adding sufficiently 
many terms of the series we can make the partial sums as close as we like to 1. So it seems 
reasonable to say that the sum of this infinite series is 1 and to write

o
`

n−1
 

1

2n −
1

2
1

1

4
1

1

8
1

1

16
1 ∙ ∙ ∙ 1

1

2n 1 ∙ ∙ ∙ − 1

We use a similar idea to determine whether or not a general series (1) has a sum. We  
consider the partial sums

 s1 − a1

 s2 − a1 1 a2

 s3 − a1 1 a2 1 a3

 s4 − a1 1 a2 1 a3 1 a4

and, in general,

sn − a1 1 a2 1 a3 1 ∙ ∙ ∙ 1 an − o
n

i−1
 ai

The current record for computing a  
decimal approximation for � was 
obtained by Shigeru Kondo and Alexan-
der Yee in 2011 and contains more than 
10 trillion decimal places.

1

n Sum of first n terms

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750

10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997
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2   ■   SERIES

These partial sums form a new sequence hsn j , which may or may not have a limit. If 
lim nl` sn − s exists (as a finite number), then, as in the preceding example, we call it the 
sum of the infinite series o an .

2 �  Definition � Given a series o`
n−1 an − a1 1  a2 1  a3 1 ∙  ∙  ∙, let sn denote its  

nth partial sum:

sn − o
n

i−1
 ai − a1 1 a2 1 ∙ ∙ ∙ 1 an

If the sequence hsn j is convergent and lim nl` sn − s exists as a real number, then 
the series o an  is called convergent and we write

a1 1 a2 1 ∙ ∙ ∙ 1 an 1 ∙ ∙ ∙ −  s         or        o
`

n−1
 an − s

The number s is called the sum of the series. If the sequence hsn j is divergent, then 
the series is called divergent.

Thus the sum of a series is the limit of the sequence of partial sums. So when we write 
o`

n−1 an − s, we mean that by adding sufficiently many terms of the series we can get as 
close as we like to the number s. Notice that

o
`

n−1
 an − lim

n l `
o

n

i−1
 ai

EXAMPLE �1�  Suppose we know that the sum of the first n terms of the series o`
n−1 an is

sn − a1 1 a2 1 ∙ ∙ ∙ 1 an −
2n

3n 1 5

Then the sum of the series is the limit of the sequence hsn j:

	 o
`

n−1
 an − lim

n l `
 sn − lim

n l `
 

2n

3n 1 5
− lim

n l `
 

2

3 1
5

n

−
2

3
	 n

In Example 1 we were given an expression for the sum of the first n terms, but it’s usu-
ally not easy to find such an expression. In Example 2, however, we look at a famous series 
for which we can find an explicit formula for sn. See also Section 2.1.

EXAMPLE �2�  An important example of an infinite series is the geometric series

a 1 ar 1 ar 2 1 ar 3 1 ∙ ∙ ∙ 1 ar n21 1 ∙ ∙ ∙ − o
`

n−1
 ar n21        a ± 0

Each term is obtained from the preceding one by multiplying it by the common ratio r. 
(We have already considered the special case where a − 1

2 and r − 1
2 on page 1.)

If r − 1, then sn − a 1 a 1 ∙ ∙ ∙ 1 a − nal 6`. Since lim nl` sn doesn’t exist, the 
geometric series diverges in this case.

If r ± 1, we have

 sn −  a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n21

and	  rsn −    ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n21 1 ar n

Compare with the improper integral

y`

1
 f sxd dx − lim

t l `
 y t

1
 f sxd dx

To find this integral we integrate from 1 
to t and then let t l `. For a series, we 
sum from 1 to n and then let n l `.
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	 SERIES   ■   3

Subtracting these equations, we get

 sn 2 rsn − a 2 ar n

 sn −
as1 2 r n d

1 2 r

If 21 , r , 1, then r n l 0 as nl `, so

lim
n l `

 sn − lim
n l `

 
as1 2 r n d

1 2 r
−

a

1 2 r
2

a

1 2 r
 lim
n l `

 r n −
a

1 2 r

Thus when | r | , 1 the geometric series is convergent and its sum is ays1 2 rd.
If r < 21 or r . 1, the sequence hr n j is divergent and so, by Equation 3, lim nl` sn 

does not exist. Therefore the geometric series diverges in those cases.	 n

We summarize the results of Example 2 as follows.

4 � � The geometric series

o
`

n−1
 ar n21 − a 1 ar 1 ar 2 1 ∙ ∙ ∙

is convergent if | r | , 1 and its sum is

o
`

n−1
 ar n21 −

a

1 2 r
        | r | , 1

If | r | > 1, the geometric series is divergent.

In words: The sum of a convergent 
geometric series is

first term

1 2 common ratio

EXAMPLE �3�  Find the sum of the geometric series

5 2 10
3 1 20

9 2 40
27 1 ∙ ∙ ∙

SOLUTION � The first term is a − 5 and the common ratio is r − 22
3. Since  

| r | − 2
3 , 1, the series is convergent by (4) and its sum is

	 5 2
10

3
1

20

9
2

40

27
1 ∙ ∙ ∙ −

5

1 2 (22
3)

−
5
5
3

− 3	 n

n sn

1 5.000000
2 1.666667
3 3.888889
4 2.407407
5 3.395062
6 2.736626
7 3.175583
8 2.882945
9 3.078037

10 2.947975       

0 n

sn

20

3

aa

a

ara-ar

ar

ar@

ar#

ar@

s

FIGURE 1� 

Figure 1 provides a geometric demon-
stration of the result in Example 2. If 
the triangles are constructed as shown 
and s is the sum of the series, then, by 
similar triangles,

s

a
−

a

a 2 ar
so s −

a

1 2 r
3

What do we really mean when we say 
that the sum of the series in Example 3 
is 3? Of course, we can’t literally add 
an infinite number of terms, one by 
one. But, according to Definition 2,  
the total sum is the limit of the sequence 
of partial sums. So, by taking the sum 
of sufficiently many terms, we can get 
as close as we like to the number 3.  
The table shows the first ten partial 
sums sn and the graph in Figure 2 
shows how the sequence of partial  
sums approaches 3. FIGURE 2� 
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4   ■   SERIES

EXAMPLE �4�  Is the series o
`

n−1
 22n312n convergent or divergent?

SOLUTION�  Let’s rewrite the nth term of the series in the form ar n21:

o
`

n−1
 22n312n − o

`

n−1
 s22dn 32sn21d − o

`

n−1
 

4n

3n21 − o
`

n−1
 4(4

3)n21

We recognize this series as a geometric series with a − 4 and r − 4
3. Since r . 1, the 

series diverges by (4).	 n

EXAMPLE �5�  Write the number 2.317 − 2.3171717. . . as a ratio of integers.

SOLUTION

2.3171717. . . − 2.3 1
17

103 1
17

105 1
17

107 1 ∙ ∙ ∙

After the first term we have a geometric series with a − 17y103 and r − 1y102.  
Therefore

	  2.317 − 2.3 1

17

103

1 2
1

102

− 2.3 1

17

1000

99

100

	  −
23

10
1

17

990
−

1147

495
	 n

EXAMPLE �6�  Find the sum of the series o
`

n−0
 xn, where | x | , 1.

SOLUTION � Notice that this series starts with n − 0 and so the first term is x 0 − 1. (With 
series, we adopt the convention that x 0 − 1 even when x − 0.) Thus

o
`

n−0
 xn − 1 1 x 1 x 2 1 x 3 1 x 4 1 ∙ ∙ ∙

This is a geometric series with a − 1 and r − x. Since | r | − | x | , 1, it converges  
and (4) gives

	 o
`

n−0
 xn −

1

1 2 x
	 n

EXAMPLE �7�  Show that the series o
`

n−1
 

1

nsn 1 1d
 is convergent, and find its sum.

SOLUTION � This is not a geometric series, so we go back to the definition of a convergent 
series and compute the partial sums.

sn − o
n

i−1
 

1

isi 1 1d
−

1

1 ? 2
1

1

2 ? 3
1

1

3 ? 4
1 ∙ ∙ ∙ 1

1

nsn 1 1d

We can simplify this expression if we use the partial fraction decomposition

1

isi 1 1d
−

1

i
2

1

i 1 1

Another way to identify a and r is to 
write out the first few terms:

4 1 16
3 1 64

9 1 ∙ ∙ ∙

5
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	 SERIES   ■   5

(see Section 5.6). Thus we have

 sn − o
n

i−1
 

1

isi 1 1d
− o

n

i−1
 S 1

i
2

1

i 1 1D
 − S1 2

1

2D 1 S 1

2
2

1

3D 1 S 1

3
2

1

4D 1 ∙ ∙ ∙ 1 S 1

n
2

1

n 1 1D
 − 1 2

1

n 1 1

and so	 lim
nl`

 sn − lim
nl`

 S1 2
1

n 1 1D − 1 2 0 − 1

Therefore the given series is convergent and

	 o
`

n−1
 

1

nsn 1 1d
− 1	 n

EXAMPLE �8�  Show that the harmonic series

o
`

n−1
 
1

n
− 1 1

1

2
1

1

3
1

1

4
1 ∙ ∙ ∙

is divergent.

SOLUTION � For this particular series it’s convenient to consider the partial sums s2, s4, s8, 
s16, s32, . . . and show that they become large.

 s2 − 1 1 1
2

 s4 − 1 1 1
2 1 s1

3 1 1
4 d . 1 1 1

2 1 s1
4 1 1

4 d − 1 1 2
2

 s8 − 1 1 1
2 1 s1

3 1 1
4 d 1 s1

5 1 1
6 1 1

7 1 1
8 d

 . 1 1 1
2 1 s1

4 1 1
4 d 1 s1

8 1 1
8 1 1

8 1 1
8 d

 − 1 1 1
2 1 1

2 1 1
2 − 1 1 3

2

 s16 − 1 1 1
2 1 s1

3 1 1
4 d 1 s1

5 1 ∙ ∙ ∙ 1 1
8 d 1 s1

9 1 ∙ ∙ ∙ 1 1
16 d

 . 1 1 1
2 1 s1

4 1 1
4 d 1 s1

8 1 ∙ ∙ ∙ 1 1
8 d 1 s 1

16 1 ∙ ∙ ∙ 1 1
16 d

 − 1 1 1
2 1 1

2 1 1
2 1 1

2 − 1 1 4
2

Similarly, s32 . 1 1 5
2 , s64 . 1 1 6

2 , and in general

s2n . 1 1
n

2

This shows that s2n l ` as nl ` and so hsn j is divergent. Therefore the harmonic series 
diverges.	 n

6 �  Theorem � If the series o
`

n−1
 an is convergent, then lim 

nl`
 an − 0.

Notice that the terms cancel in pairs.  
This is an example of a telescoping 
sum: Because of all the cancellations, 
the sum collapses (like a pirate’s col-
lapsing telescope) into just two terms.

The method used in Example 9 for 
showing that the harmonic series 
diverges is due to the French scholar 
Nicole Oresme (1323–1382).

0

1

�an�

n

�sn�

FIGURE 3

Figure 3 illustrates Example 7 by show- 
ing the graphs of the sequence of terms 
an − 1y[nsn 1 1d] and the sequence 
hsn j of partial sums. Notice that an l 0 
and sn l 1. See Exercises 76 and 77 
for two geometric interpretations of 
Example 7.
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6   ■   SERIES

PROOF  Let sn − a1 1 a2 1 ∙ ∙ ∙ 1 an. Then an − sn 2 sn21. Since o an  is convergent, the 
sequence hsn j is convergent. Let lim nl` sn − s. Since n 2 1l ` as nl `, we also 
have lim nl` sn21 − s. Therefore

	  lim
n l `

 an − lim
n l `

ssn 2 sn21d − lim
n l `

 sn 2 lim
n l `

 sn21 − s 2 s − 0	 n

NOTE 1 � With any series o an  we associate two sequences: the sequence hsn j of its par-
tial sums and the sequence han j of its terms. If o an  is convergent, then the limit of the 
sequence hsn j is s (the sum of the series) and, as Theorem 6 asserts, the limit of the sequence 
han j is 0.

NOTE 2 � The converse of Theorem 6 is not true in general. If lim nl` an − 0, we can-
not conclude that o an  is convergent. Observe that for the harmonic series o1yn  we have 
an − 1ynl 0 as nl `, but we showed in Example 8 that o1yn  is divergent.

7 �  Test for Divergence � If lim
nl`

 an does not exist or if lim
nl`

 an ± 0, then the

series o
`

n−1
 an is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not divergent, 
then it is convergent, and so lim nl` an − 0.

EXAMPLE �9�  Show that the series o
`

n−1
 

n 2

5n 2 1 4
 diverges.

SOLUTION

lim
nl`

 an − lim
nl`

 
n 2

5n 2 1 4
− lim

nl`
 

1

5 1 4yn 2 −
1

5
± 0

So the series diverges by the Test for Divergence.	 n

NOTE 3 � If we find that lim nl` an ± 0, we know that o an is divergent. If we find  
that lim nl` an − 0, we know nothing about the convergence or divergence of o an. 
Remember the warning in Note 2: if lim nl` an − 0, the series o an might converge or it 
might diverge.

8 �  Theorem � If o an and o bn are convergent series, then so are the series o can

(where c is a constant), osan 1 bn d, and osan 2 bn d, and

	 (i)	 o
`

n−1
 can − c o

`

n−1
 an

	 (ii)	 o
`

n−1
 san 1 bn d − o

`

n−1
 an 1 o

`

n−1
 bn

	(iii)	 o
`

n−1
 san 2 bn d − o

`

n−1
 an 2 o

`

n−1
 bn

These properties of convergent series follow from the corresponding Limit Laws for 
Sequences in Section 2.1. For instance, here is how part (ii) of Theorem 8 is proved:

Let

sn − o
n

i−1
 ai           s − o

`

n−1
 an            tn − o

n

i−1
 bi            t − o

`

n−1
 bn
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	 SERIES   ■   7

The nth partial sum for the series osan 1 bn d is

un − o
n

i−1
 sai 1 bid

and thus we have

 lim
n l `

 un − lim
n l `

 o
n

i−1
 sai 1 bid − lim

n l `
 So

n

i−1
 ai 1 o

n

i−1
 biD

 − lim
n l `

 o
n

i−1
 ai 1 lim

n l `
 o

n

i−1
 bi

 − lim
n l `

 sn 1 lim
n l `

 tn − s 1 t

Therefore o  san 1 bn d is convergent and its sum is

	 o
`

n−1
 san 1 bn d − s 1 t − o

`

n−1
 an 1 o

`

n−1
 bn	 n

EXAMPLE �10�  Find the sum of the series o
`

n−1
 S 3

nsn 1 1d
1

1

2nD.

SOLUTION � The series o1y2n is a geometric series with a − 1
2 and r − 1

2, so

o
`

n−1
 

1

2n −
1
2

1 2 1
2

− 1

In Example 7 we found that

o
`

n−1
 

1

nsn 1 1d
− 1 

So, by Theorem 8, the given series is convergent and

 o
`

n−1
 S 3

nsn 1 1d
1

1

2nD − 3 o
`

n−1
 

1

nsn 1 1d
1 o

`

n−1
 

1

2n

	  − 3 ? 1 1 1 − 4 	 n

NOTE 4 � A finite number of terms doesn’t affect the convergence or divergence of a 
series. For instance, suppose that we were able to show that the series

o
`

n−4
 

n

n3 1 1

is convergent. Since

o
`

n−1
 

n

n3 1 1
−

1

2
1

2

9
1

3

28
1 o

`

n−4
 

n

n3 1 1

it follows that the entire series o`
n−1 nysn3 1 1d is convergent. Similarly, if it is known 

that the series o`
n−N11 an converges, then the full series

o
`

n−1
 an − o

N

n−1
 an 1 o

`

n−N11
 an

is also convergent.
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8   ■   SERIES

Exercises

	21.	� o
`

n−1
 6s0.9dn21	 22.	� o

`

n−1
 

10 n

s29dn21

	23.	� o
`

n−1
 
s23dn21

4 n 	 24.	� o
`

n−0

 
1

ss2 dn

	25.	� o
`

n−0
 

� n

3 n11 	 26.	�� o
`

n−1
 

e n

3n21

27–42  ■�  Determine whether the series is convergent or diver-
gent. If it is convergent, find its sum.

	27.	�
1

3
1

1

6
1

1

9
1

1

12
1

1

15
1 ∙ ∙ ∙

	28.	�
1

3
1

2

9
1

1

27
1

2

81
1

1

243
1

2

729
1 ∙ ∙ ∙

	29.	� o
`

n−1
 

n 2 1

3n 2 1
	 30.	� o

`

k−1
 
ksk 1 2d
sk 1 3d2

	31.	� o
`

n−1
 
1 1 2n

3n 	 32.	� o
`

n−1
 
1 1 3 n

2 n

	33.	� o
`

n−1
 sn 2 	 34.	� o

`

n−1
 fs0.8dn21 2 s0.3dng

	35.	� o
`

n−1
 lnS n2 1 1

2n2 1 1D	 36.	� o
`

n−1
 

1

1 1 s2
3dn

	37.	 o
`

k−0
 S�

3Dk

	 38.	� o
`

k−1
 scos 1dk

	39.	� o
`

n−1
 arctan n	 40.	� o

`

n−1
 S 3

5 n 1
2

nD
	41.	� o

`

n−1
 S 1

en
 1

1

nsn 1 1dD	 42.	�� o
`

n−1
 
en

n2

43–48  ■�  Determine whether the series is convergent or diver-
gent by expressing sn as a telescoping sum (as in Example 7). If 
it is convergent, find its sum.

	43.	� o
`

n−2
 

2

n2 2 1
	 44.	� o

`

n−1
 ln 

n

n 1 1

	45.	� o
`

n−1
 

3

nsn 1 3d

	46.	� o
`

n−1
 Scos 

1

n2
 2 cos 

1

sn 1 1d2D
	47.	� o

`

n−1
 se 1yn 2 e1ysn11dd	 48.	�� o

`

n−2
 

1

n3 2 n

	 1.	� �(a)	 What is the difference between a sequence and a series?
	 (b)	 What is a convergent series? What is a divergent series?

	 2.	�� Explain what it means to say that o`
n−1 an − 5.

3–4  ■�  Calculate the sum of the series o`
n−1 an whose partial 

sums are given.

	 3.	� sn − 2 2 3s0.8dn	 4.	� sn −
n 2 2 1

4n 2 1 1

5–8  ■�  Calculate the first eight terms of the sequence of partial 
sums correct to four decimal places. Does it appear that the series 
is convergent or divergent?

	 5.	� o
`

n−1
 

1

n3 	 6.	� o
`

n−1
 

1

lnsn 1 1d

	 7.	� o
`

n−1
 

n

1 1 sn 
	 8.	 o

`

n−1
 
s21dn21

n!

9–14  ■� � Find at least 10 partial sums of the series. Graph both the 
sequence of terms and the sequence of partial sums on the same 
screen. Does it appear that the series is convergent or divergent?  
If it is convergent, find the sum. If it is divergent, explain why.

	 9.	� o
`

n−1
 

12

s25dn 	 10.	� o
`

n−1
 cos n

	11.	� o
`

n−1
 

n

sn 2 1 4 
	 12.	� o

`

n−1
 
7 n11

10 n

	13.	� o
`

n−1
 S 1

sn 
2

1

sn 1 1 D	 14.	 o
`

n−2

 
1

nsn 1 2d

	15.	� �Let an −
2n

3n 1 1
.

	 (a)	 Determine whether han j is convergent.

	 (b)	 Determine whether o`
n−1 an is convergent.

	16.	�� (a)	 Explain the difference between

o
n

i−1
 ai        and        o

n

j−1
 aj

	 (b)	 Explain the difference between

o
n

i−1
 ai        and        o

n

i−1
 aj

17–26  ■�  Determine whether the geometric series is convergent 
or divergent. If it is convergent, find its sum.

	17.	� 3 2 4 1 16
3 2 64

9 1 ∙ ∙ ∙	 18.	� 4 1 3 1 9
4 1 27

16 1 ∙ ∙ ∙

	19.	� 10 2 2 1 0.4 2 0.08 1 ∙ ∙ ∙

	20.	� 2 1 0.5 1 0.125 1 0.03125 1 ∙ ∙ ∙

;
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	 SERIES   ■   9

	69.	� Drug dosing � A patient takes 150 mg of a drug at the same 
time every day. Just before each tablet is taken, 5% of the 
drug remains in the body.

	 (a)	� What quantity of the drug is in the body after the third 
tablet? After the nth tablet?

	 (b)	� What quantity of the drug remains in the body in the 
long run?

	70.	� Insulin injection � After injection of a dose D of insulin, the 
concentration of insulin in a patient’s system decays expo-
nentially and so it can be written as De2at, where t represents 
time in hours and a is a positive constant.

	 (a)	� If a dose D is injected every T hours, write an expression 
for the sum of the residual concentrations just before the 
sn 1 1dst injection.

	 (b)	� Determine the limiting pre-injection concentration.
	 (c)	� If the concentration of insulin must always remain at or 

above a critical value C, determine a minimal dosage D 
in terms of C, a, and T.

	71.	��� When money is spent on goods and services, those who 
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that, 
and so on. Economists call this chain reaction the multiplier 
effect. In a hypothetical isolated community, the local gov-
ernment begins the process by spending D dollars. Suppose 
that each recipient of spent money spends 100c% and saves 
100s% of the money that he or she receives. The values c 
and s are called the marginal propensity to consume and the 
marginal propensity to save and, of course, c 1 s − 1.

	 (a)	� Let Sn be the total spending that has been generated after 
n transactions. Find an equation for Sn.

	 (b)	� Show that limn l ` Sn − kD, where k − 1ys. The number 
k is called the multiplier. What is the multiplier if the 
marginal propensity to consume is 80%?

Note: The federal government uses this principle to justify 
deficit spending. Banks use this principle to justify lending a 
large percentage of the money that they receive in deposits.

	72.	� �A certain ball has the property that each time it falls from a 
height h onto a hard, level surface, it rebounds to a height rh,  
where 0 , r , 1. Suppose that the ball is dropped from an 
initial height of H meters.

	 (a)	� Assuming that the ball continues to bounce indefinitely, 
find the total distance that it travels.

	 (b)	� Calculate the total time that the ball travels. (Use the fact 
that the ball falls 12 tt 2 meters in t seconds.)

	 (c)	� Suppose that each time the ball strikes the surface with 
velocity v it rebounds with velocity 2kv, where 
0 , k , 1. How long will it take for the ball to come  
to rest?

	73.	 ��Find the value of c if

o
`

n−2
 s1 1 cd2n − 2

	74.	�� Find the value of c such that

o
`

n−0
 e nc − 10 

	49.	� �Let x − 0.99999 . . . .
	 (a)	� Do you think that x , 1 or x − 1?
	 (b)	� Sum a geometric series to find the value of x.
	 (c)	� How many decimal representations does the number 1 

have?
	 (d)	� Which numbers have more than one decimal  

representation?

	50.	�� A sequence of terms is defined by

a1 − 1        an − s5 2 ndan21

Calculate o `
n−1 an.

51–56 � Express the number as a ratio of integers.

	51.	� 0.8 − 0.8888 . . .	 52.	� 0.46 − 0.46464646 . . .

	53.	� 2.516 − 2.516516516 . . .

	54.	� 10.135 − 10.135353535 . . .

	55.	� 1.5342	 56.	�� 7.12345

57–63  ■�  Find the values of x for which the series converges. 
Find the sum of the series for those values of x.

	57.	� o
`

n−1
 s25dnx n	 58.	� o

`

n−1
 sx 1 2dn

	59.	� o
`

n−0
 
sx 2 2dn

3n 	 60.	� o
`

n−0
 s24dnsx 2 5dn

	61.	� o
`

n−0
 
2n

x n 	 62.	� o
`

n−0
 
sin nx

3n

	63.	�� o
`

n−0
 e nx

	64.	�� We have seen that the harmonic series is a divergent series 
whose terms approach 0. Show that

o
`

n−1
 lnS1 1

1

nD
is another series with this property.

65–66  ■� � Use the partial fraction command on your CAS to find 
a convenient expression for the partial sum, and then use this 
expression to find the sum of the series. Check your answer by 
using the CAS to sum the series directly.

	65.	� o
`

n−1
 
3n2 1 3n 1 1

sn2 1 nd3 	 66.	�� o
`

n−3
 

1

n5 2 5n3 1 4n

	67.	�� If the nth partial sum of a series o `
n−1 an is

sn −
n 2 1

n 1 1

find an and o `
n−1 an.

	68.	�� If the nth partial sum of a series o `
n−1 an is sn − 3 2 n22n, 

find an and o `
n−1 an.

CAS
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10   ■   SERIES

	79.	� �What is wrong with the following calculation?

 0 − 0 1 0 1 0 1 ∙ ∙ ∙

 − s1 2 1d 1 s1 2 1d 1 s1 2 1d 1 ∙ ∙ ∙

 − 1 2 1 1 1 2 1 1 1 2 1 1 ∙ ∙ ∙

 − 1 1 s21 1 1d 1 s21 1 1d 1 s21 1 1d 1 ∙ ∙ ∙

 − 1 1 0 1 0 1 0 1 ∙ ∙ ∙ − 1

(Guido Ubaldus thought that this proved the existence of 
God because “something has been created out of nothing.”)

	80.	�� Suppose that o `
n−1 an san ± 0d is known to be a convergent 

series. Prove that o `
n−1 1yan is a divergent series.

	81.	�� Prove part (i) of Theorem 8.

	82.	� �If o  an is divergent and c ± 0, show that o  can is divergent.

	83.	� �If o  an is convergent and o  bn is divergent, show that  
the series o  san 1 bnd is divergent.  [Hint: Argue by  
contradiction.]

	84.	� �If o  an and o  bn are both divergent, is o  san 1 bnd neces-
sarily divergent?

	85.	� �Suppose that a series o  an has positive terms and its partial 
sums sn satisfy the inequality sn < 1000 for all n. Explain 
why o  an must be convergent.

	86.	� �The Fibonacci sequence is defined by the equations

f1 − 1,    f2 − 1,    fn − fn21 1 fn22        n > 3

Show that each of the following statements is true.

	 (a)	
1

fn21 fn11
−

1

fn21 fn
2

1

fn fn11

	 (b)	 o
`

n−2
 

1

fn21 fn11
− 1	 (c)	 o

`

n−2
 

 fn

fn21 fn11
− 2

	87.	� �The Cantor set, named after the German mathematician 
Georg Cantor (1845–1918), is constructed as follows. We 
start with the closed interval [0, 1] and remove the open 

		��  interval ( 1
3,  23 ). That leaves the two intervals f0, 13 g and f 2

3, 1g 
and we remove the open middle third of each. Four intervals 
remain and again we remove the open middle third of each 
of them. We continue this procedure indefinitely, at each 
step removing the open middle third of every interval that 
remains from the preceding step. The Cantor set consists 
of the numbers that remain in [0, 1] after all those intervals 
have been removed.

	 (a)	� Show that the total length of all the intervals that are 
removed is 1. Despite that, the Cantor set contains infi-
nitely many numbers. Give examples of some numbers 
in the Cantor set.

	 (b)	� The Sierpinski carpet is a two-dimensional counter-
part of the Cantor set. It is constructed by removing the 
center one-ninth of a square of side 1, then removing the 

	75.	�� In Example 8 we showed that the harmonic series is diver-
gent. Here we outline another method, making use of the fact 
that e x . 1 1 x for any x . 0.
    If sn is the nth partial sum of the harmonic series, show 
that e sn . n 1 1. Why does this imply that the harmonic 
series is divergent?

	76.	� �Graph the curves y − x n, 0 < x < 1, for n − 0, 1, 2, 3, 
4, . . . on a common screen. By finding the areas between 
successive curves, give a geometric demonstration of the 
fact, shown in Example 7, that

o
`

n−1
 

1

nsn 1 1d
− 1

	77.	�� The figure shows two circles C and D of radius 1 that touch 
at P. The line T is a common tangent line; C1 is the circle 
that touches C, D, and T; C2 is the circle that touches C, D,  
and C1; C3 is the circle that touches C, D, and C2. This proce-
dure can be continued indefinitely and produces an infinite 
sequence of circles hCn j. Find an expression for the diameter 
of Cn and thus provide another geometric demonstration of 
Example 7.

1 1

P

C£
C™

C¡ D

T

C

	78.	�� A right triangle ABC is given with /A − � and | AC | − b.  
CD is drawn perpendicular to AB, DE is drawn perpendicu-
lar to BC, EF� AB, and this process is continued indefi
nitely, as shown in the figure. Find the total length of all the  
perpendiculars

| CD | 1 | DE | 1 | EF | 1 | FG | 1 ∙ ∙ ∙ 

in terms of b and �.

A

CEGB

F
H

D ¨

b

;
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	 SERIES   ■   11

	 (b)	 Use mathematical induction to prove your guess.
	 (c)	� Show that the given infinite series is convergent, and find 

its sum.

	90.	� �In the figure at the right there are infinitely many circles 
approaching the vertices of an equilateral triangle, each circle 
touching other circles and sides of the triangle. If the triangle 
has sides of length 1, find the total area occupied by the circles.

		�  centers of the eight smaller remaining squares, and so on. 
(The figure shows the first three steps of the construction.) 
Show that the sum of the areas of the removed squares  
is 1. This implies that the Sierpinski carpet has area 0.

	88.	� �(a)	� A sequence han j is defined recursively by the equation 
an − 1

2 san21 1 an22 d for n > 3, where a1 and a2 can be any 
real numbers. Experiment with various values of a1 and a2 
and use your calculator to guess the limit of the sequence.

	 (b)	� Find limn l ` an in terms of a1 and a2 by expressing 
an11 2 an in terms of a2 2 a1 and summing a series.

	89.	� �Consider the series  o `
n−1 nysn 1 1d! .

	 (a)	� Find the partial sums s1, s2, s3, and s4. Do you recognize the 
denominators? Use the pattern to guess a formula for sn.
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Answers

15.  (a)  Yes      (b)  No        17.  D        19.  25
3         21.  60      

23.  1
7        25.  D        27.  D        29. � D      

31.  5
2        33.  D        35.  D      

37.  D        39.  D        41.  eyse 2 1d        43.  3
2        45.  11

6       
47.  e 2 1      
49.  (b)  1      (c)  2      (d)  All rational numbers with a terminating 
decimal representation, except 0
51.  8

9        53.  838
333       55.  5063y3300      

57.  2
1

5
, x ,

1

5
; 

25x

1 1 5x
      

59.  21 , x , 5; 
3

5 2 x

61.  x . 2 or x , 22; 
x

x 2 2
        63.  x , 0; 

1

1 2 e x

65.  1        67.  a1 − 0, an −
2

nsn 1 1d
 for n . 1, sum − 1      

69.  �(a) � 157.875 mg; 3000
19 s1 2 0.05nd      (b)  157.895 mg

71.  (a)  Sn −
Ds1 2 c n d

1 2 c
      (b)  5        73.  1

2 ss3 2 1d      

77. 
1

nsn 1 1d
        79.  The series is divergent.      

85.  hsn j is bounded and increasing.      

87.  (a)  0, 19, 29, 13, 23, 79, 89, 1

89.  (a)  1
2, 56, 23

24, 119
120; 

sn 1 1d! 2 1

sn 1 1d!
     (c)  1

1.  (a)  A sequence is an ordered list of numbers whereas a series is 
the sum of a list of numbers. 
(b)  A series is convergent if the sequence of partial sums is a conver-
gent sequence. A series is divergent if it is not convergent.
3.  2      
5.  1, 1.125, 1.1620, 1.1777, 1.1857, 1.1903, 1.1932, 1.1952; C
7.  0.5, 1.3284, 2.4265, 3.7598, 5.3049, 7.0443, 8.9644, 11.0540; D
9.  22.40000, 21.92000,	

ca080203
10.5.00

ssnd

1

0 10

_3

sand22.01600, 21.99680,
22.00064, 21.99987,
22.00003, 21.99999,
22.00000, 22.00000;
convergent, sum − 22

11.  0.44721, 1.15432,	
1.98637, 2.88080,
3.80927, 4.75796,�
5.71948, 6.68962,
7.66581, 8.64639;
divergent

13.  0.29289, 0.42265,	

0

1

11

ssnd

sand

�0.50000, 0.55279,
�0.59175, 0.62204,
�0.64645, 0.66667,
�0.68377, 0.69849;
�convergent, sum − 1

10

0 11

ssnd

sand
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Solutions
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1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.

(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.

3.
∞
=1

 = lim
→∞

 = lim
→∞

[2− 3(08)] = lim
→∞

2− 3 lim
→∞

(08) = 2− 3(0) = 2

5. For
∞
=1

1

3
,  =

1

3
. 1 = 1 =

1

13
= 1, 2 = 1 + 2 = 1 +

1

23
= 1125, 3 = 2 + 3 ≈ 11620,

4 = 3 + 4 ≈ 11777, 5 = 4 + 5 ≈ 11857, 6 = 5 + 6 ≈ 11903, 7 = 6 + 7 ≈ 11932, and

8 = 7 + 8 ≈ 11952. It appears that the series is convergent.

7. For
∞
=1



1 +
√

,  =



1 +
√

. 1 = 1 =

1

1 +
√

1
= 05, 2 = 1 + 2 = 05 +

2

1 +
√

2
≈ 13284,

3 = 2 + 3 ≈ 24265, 4 = 3 + 4 ≈ 37598, 5 = 4 + 5 ≈ 53049, 6 = 5 + 6 ≈ 70443,

7 = 6 + 7 ≈ 89644, 8 = 7 + 8 ≈ 110540. It appears that the series is divergent.

9.

 

1 −240000

2 −192000

3 −201600

4 −199680

5 −200064

6 −199987

7 −200003

8 −199999

9 −200000

10 −200000

From the graph and the table, it seems that the series converges to−2. In fact, it is a geometric

series with  = −24 and  = − 1
5
, so its sum is

∞
=1

12

(−5)
=

−24

1− − 1
5

 =
−24

12
= −2

Note that the dot corresponding to  = 1 is part of both {} and {}.

TI-86 Note: To graph {} and {}, set your calculator to Param mode and DrawDot mode. (DrawDot is under

GRAPH, MORE, FORMT (F3).) Now under E(t)= make the assignments: xt1=t, yt1=12/(-5)ˆt, xt2=t,

yt2=sum seq(yt1,t,1,t,1). (sum and seq are under LIST, OPS (F5), MORE.) Under WIND use

1,10,1,0,10,1,-3,1,1 to obtain a graph similar to the one above. Then use TRACE (F4) to see the values.
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11.
 

1 044721

2 115432

3 198637

4 288080

5 380927

6 475796

7 571948

8 668962

9 766581

10 864639

The series
∞
=1

√
2 + 4

diverges, since its terms do not approach 0.

13.
 

1 029289

2 042265

3 050000

4 055279

5 059175

6 062204

7 064645

8 066667

9 068377

10 069849

From the graph and the table, it seems that the series converges.


=1


1√

− 1√

+ 1


=


1√
1
− 1√

2


+


1√
2
− 1√

3


+ · · ·+


1√

− 1√

 + 1


= 1− 1√

 + 1
,

so
∞
=1


1√

− 1√

+ 1


= lim

→∞


1− 1√

 + 1


= 1.

15. (a) lim
→∞

 = lim
→∞

2

3+ 1
=

2

3
, so the sequence {} is convergent by (2.1.1).

(b) Since lim
→∞

 = 2
3
6= 0, the series

∞
=1

 is divergent by the Test for Divergence.

17. 3− 4 + 16
3
− 64

9
+ · · · is a geometric series with ratio  = − 4

3
. Since || = 4

3
 1, the series diverges.

19. 10− 2 + 04− 008 + · · · is a geometric series with ratio − 2
10

= − 1
5
. Since || = 1

5
 1, the series converges to



1− 
=

10

1− (−15)
=

10

65
=

50

6
=

25

3
.

21.
∞
=1

6(09)−1 is a geometric series with first term  = 6 and ratio  = 09. Since || = 09  1, the series converges to



1− 
=

6

1− 09
=

6

01
= 60.
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23.
∞
=1

(−3)
−1

4
=

1

4

∞
=1


−3

4

−1

. The latter series is geometric with  = 1 and ratio  = − 3
4
. Since || = 3

4
 1, it

converges to
1

1− (−34)
= 4

7
. Thus, the given series converges to


1
4


4
7


= 1

7
.

25.
∞
=0



3+1
=

1

3

∞
=0


3


is a geometric series with ratio  =



3
. Since ||  1, the series diverges.

27.
1

3
+

1

6
+

1

9
+

1

12
+

1

15
+ · · · =

∞
=1

1

3
=

1

3

∞
=1

1


. This is a constant multiple of the divergent harmonic series, so

it diverges.

29.
∞
=1

− 1

3− 1
diverges by the Test for Divergence since lim

→∞
 = lim

→∞
− 1

3− 1
=

1

3
6= 0.

31. Converges.

∞
=1

1 + 2

3
=

∞
=1


1

3
+

2

3


=

∞
=1


1

3


+


2

3


[sum of two convergent geometric series]

=
13

1− 13
+

23

1− 23
=

1

2
+ 2 =

5

2

33.
∞
=1


√

2 = 2 +
√

2 +
3
√

2 +
4
√

2 + · · · diverges by the Test for Divergence since

lim
→∞

 = lim
→∞


√

2 = lim
→∞

21 = 20 = 1 6= 0.

35.
∞
=1

ln


2 + 1

22 + 1


diverges by the Test for Divergence since

lim
→∞

 = lim
→∞

ln


2 + 1

22 + 1


= ln


lim
→∞

2 + 1

22 + 1


= ln 1

2
6= 0.

37.
∞
=0



3


is a geometric series with ratio  = 

3
≈ 1047. It diverges because || ≥ 1.

39.
∞
=1

arctan  diverges by the Test for Divergence since lim
→∞

 = lim
→∞

arctan = 
2
6= 0.

41.
∞
=1

1


=

∞
=1


1




is a geometric series with first term  =

1


and ratio  =

1


. Since || = 1


 1, the series converges

to
1

1− 1
=

1

1− 1
· 


=
1

− 1
. By Example 7,

∞
=1

1

(+ 1)
= 1. Thus, by Theorem 8(ii),

∞
=1


1


+

1

(+ 1)


=

∞
=1

1


+

∞
=1

1

(+ 1)
=

1

− 1
+ 1 =

1

− 1
+

− 1

− 1
=



− 1
.
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43. Using partial fractions, the partial sums of the series
∞
=2

2

2 − 1
are

 =

=2

2

(− 1)(+ 1)
=


=2


1

− 1
− 1

+ 1



=


1− 1

3


+


1

2
− 1

4


+


1

3
− 1

5


+ · · ·+


1

− 3
− 1

− 1


+


1

− 2
− 1





This sum is a telescoping series and  = 1 +
1

2
− 1

− 1
− 1


.

Thus,
∞
=2

2

2 − 1
= lim

→∞
 = lim

→∞


1 +

1

2
− 1

− 1
− 1




=

3

2
.

45. For the series
∞
=1

3

(+ 3)
,  =


=1

3

(+ 3)
=


=1


1


− 1

+ 3


[using partial fractions]. The latter sum is


1− 1

4


+


1
2
− 1

5


+


1
3
− 1

6


+


1
4
− 1

7


+ · · ·+


1

−3
− 1




+


1
−2

− 1
+ 1


+


1
−1

− 1
+2


+


1

− 1

+3


= 1 + 1

2
+ 1

3
− 1

+1
− 1

+ 2
− 1

+3
[telescoping series]

Thus,
∞
=1

3

(+ 3)
= lim

→∞
 = lim

→∞


1 + 1

2
+ 1

3
− 1

+1
− 1

+2
− 1

+3


= 1 + 1

2
+ 1

3
= 11

6
. Converges

47. For the series
∞
=1


1 − 1(+1)


,

 =

=1


1 − 1(+1)


= (1 − 12) + (12 − 13) + · · ·+


1 − 1(+1)


= − 1(+1)

[telescoping series]

Thus,
∞
=1


1 − 1(+1)


= lim

→∞
 = lim

→∞


− 1(+1)


= − 0 = − 1. Converges

49. (a) Many people would guess that   1, but note that  consists of an infinite number of 9s.

(b)  = 099999    =
9

10
+

9

100
+

9

1000
+

9

10,000
+ · · · =

∞
=1

9

10
, which is a geometric series with 1 = 09 and

 = 01. Its sum is
09

1− 01
=

09

09
= 1, that is,  = 1.

(c) The number 1 has two decimal representations, 100000    and 099999    .

(d) Except for 0, all rational numbers that have a terminating decimal representation can be written in more than one way. For

example, 05 can be written as 049999    as well as 050000    .

51. 08 =
8

10
+

8

102
+ · · · is a geometric series with  =

8

10
and  =

1

10
. It converges to



1− 
=

810

1− 110
=

8

9
.

53. 2516 = 2 +
516

103
+

516

106
+ · · · . Now 516

103
+

516

106
+ · · · is a geometric series with  =

516

103
and  =

1

103
. It converges to



1− 
=

516103

1− 1103
=

516103

999103
=

516

999
. Thus, 2516 = 2 +

516

999
=

2514

999
=

838

333
.
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55. 15342 = 153 +
42

104
+

42

106
+ · · · . Now 42

104
+

42

106
+ · · · is a geometric series with  =

42

104
and  =

1

102
.

It converges to


1− 
=

42104

1− 1102
=

42104

99102
=

42

9900
.

Thus, 15342 = 153 +
42

9900
=

153

100
+

42

9900
=

15,147
9900

+
42

9900
=

15,189
9900

or
5063

3300
.

57.
∞
=1

(−5) =
∞
=1

(−5) is a geometric series with  = −5, so the series converges ⇔ ||  1 ⇔

|−5|  1 ⇔ ||  1
5
, that is,− 1

5
   1

5
. In that case, the sum of the series is



1− 
=

−5

1− (−5)
=

−5

1 + 5

.

59.
∞
=0

(− 2)

3
=

∞
=0


− 2

3


is a geometric series with  =

− 2

3
, so the series converges ⇔ ||  1 ⇔

− 2

3

  1 ⇔ −1 
− 2

3
 1 ⇔ −3  − 2  3 ⇔ −1    5. In that case, the sum of the series is



1− 
=

1

1− − 2

3

=
1

3− (− 2)

3

=
3

5− 
.

61.
∞
=0

2


=

∞
=0


2




is a geometric series with  =

2


, so the series converges ⇔ ||  1 ⇔

 2
  1 ⇔

2  || ⇔   2 or   −2. In that case, the sum of the series is


1− 
=

1

1− 2
=



− 2
.

63.
∞
=0

 =
∞
=0

()
 is a geometric series with  = , so the series converges ⇔ ||  1 ⇔ ||  1 ⇔

−1    1 ⇔ 0    1 ⇔   0. In that case, the sum of the series is


1− 
=

1

1− 
.

65. After defining  , We use convert(f,parfrac); in Maple, Apart in Mathematica, or Expand Rational and

Simplify in Derive to find that the general term is
32 + 3+ 1

(2 + )3
=

1

3
− 1

(+ 1)3
. So the nth partial sum is

 =


=1


1

3
− 1

( + 1)3


=


1− 1

23


+


1

23
− 1

33


+ · · ·+


1

3
− 1

(+ 1)3


= 1− 1

(+ 1)3

The series converges to lim
→∞

 = 1. This can be confirmed by directly computing the sum using

sum(f,n=1..infinity); (in Maple), Sum[f,{n,1,Infinity}] (in Mathematica), or Calculus Sum

(from 1 to∞) and Simplify (in Derive).

67. For  = 1, 1 = 0 since 1 = 0. For   1,

 =  − −1 =
− 1

+ 1
− (− 1)− 1

(− 1) + 1
=

(− 1)− (+ 1)(− 2)

(+ 1)
=

2

(+ 1)

Also,
∞
=1

 = lim
→∞

 = lim
→∞

1− 1

1 + 1
= 1.
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69. (a) The quantity of the drug in the body after the first tablet is 150 mg. After the second tablet, there is 150 mg plus 5%

of the first 150-mg tablet, that is, [150 + 150(005)] mg. After the third tablet, the quantity is

[150 + 150(005) + 150(005)2] = 157875 mg. After  tablets, the quantity (in mg) is

150 + 150(005) + · · ·+ 150(005)−1. We can use Formula 3 to write this as
150(1− 005)

1− 005
=

3000

19
(1− 005).

(b) The number of milligrams remaining in the body in the long run is lim
→∞


3000
19

(1− 005)


= 3000
19

(1− 0) ≈ 157895,

only 002 mg more than the amount after 3 tablets.

71. (a) The first step in the chain occurs when the local government spends dollars. The people who receive it spend a

fraction  of those dollars, that is, dollars. Those who receive the dollars spend a fraction  of it, that is,

2 dollars. Continuing in this way, we see that the total spending after  transactions is

 =  ++2 + · · ·+–1 =
(1− )

1− 
by (3).

(b) lim
→∞

 = lim
→∞

(1− )

1− 
=



1− 
lim
→∞

(1− ) =


1− 


since 0    1 ⇒ lim

→∞
 = 0


=




[since +  = 1] =  [since  = 1]

If  = 08, then  = 1−  = 02 and the multiplier is  = 1 = 5.

73.
∞
=2

(1 + )− is a geometric series with  = (1 + )
−2 and  = (1 + )

−1, so the series converges when

(1 + )
−1
  1 ⇔ |1 + |  1 ⇔ 1 +   1 or 1 +   −1 ⇔   0 or   −2. We calculate the sum of the

series and set it equal to 2:
(1 + )

−2

1− (1 + )
−1

= 2 ⇔


1

1 + 

2

= 2− 2


1

1 + 


⇔ 1 = 2(1 + )2 − 2(1 + ) ⇔

22 + 2− 1 = 0 ⇔  = −2±√12
4

= ±√3− 1
2

. However, the negative root is inadmissible because−2  −√3− 1
2

 0.

So  =
√

3− 1
2

.

75.  = 1+
1
2
+

1
3
+···+ 1

 = 11213 · · · 1  (1 + 1)

1 + 1

2

 
1 + 1

3

 · · · 1 + 1



[  1 + ]

=
2

1

3

2

4

3
· · · + 1


= + 1

Thus,   + 1 and lim
→∞

 = ∞. Since {} is increasing, lim
→∞

 = ∞, implying that the harmonic series is

divergent.
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77. Let  be the diameter of . We draw lines from the centers of the  to

the center of (or ), and using the Pythagorean Theorem, we can write

12 +

1− 1

2
1

2
=

1 + 1

2
1

2 ⇔

1 =

1 + 1

2
1

2 − 1− 1
2
1

2
= 21 [difference of squares] ⇒ 1 = 1

2
.

Similarly,

1 =

1 + 1

2
2

2 − 1− 1 − 1
2
2

2
= 22 + 21 − 2

1 − 12

= (2− 1)(1 + 2) ⇔

2 =
1

2− 1

− 1 =
(1− 1)

2

2− 1

, 1 =

1 + 1

2
3

2 − 1− 1 − 2 − 1
2
3

2 ⇔ 3 =
[1− (1 + 2)]

2

2− (1 + 2)
, and in general,

+1 =


1−

=1 
2

2−

=1


. If we actually calculate 2 and 3 from the formulas above, we find that they are
1

6
=

1

2 · 3 and

1

12
=

1

3 · 4 respectively, so we suspect that in general,  =
1

(+ 1)
. To prove this, we use induction: Assume that for all

 ≤ ,  =
1

( + 1)
=

1


− 1

 + 1
. Then


=1

 = 1− 1

+ 1
=



+ 1
[telescoping sum]. Substituting this into our

formula for +1, we get +1 =


1− 

+ 1

2
2−




+ 1

 =

1

(+ 1)
2

+ 2

+ 1

=
1

(+ 1)(+ 2)
, and the induction is complete.

Now, we observe that the partial sums


=1  of the diameters of the circles approach 1 as →∞; that is,

∞
=1

 =
∞
=1

1

(+ 1)
= 1, which is what we wanted to prove.

79. The series 1− 1 + 1− 1 + 1− 1 + · · · diverges (geometric series with  = −1) so we cannot say that

0 = 1− 1 + 1− 1 + 1− 1 + · · · .

81.
∞

=1  = lim
→∞



=1  = lim
→∞




=1  =  lim
→∞



=1  = 
∞

=1 , which exists by hypothesis.

83. Suppose on the contrary that


( + ) converges. Then


( + ) and


 are convergent series. So by

Theorem 8(iii),


[( + )− ] would also be convergent. But


[( + )− ] =


, a contradiction, since
 is given to be divergent.

85. The partial sums {} form an increasing sequence, since  − −1 =   0 for all . Also, the sequence {} is bounded
since  ≤ 1000 for all . So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series

 is convergent.
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87. (a) At the first step, only the interval


1
3
 2

3


(length 1

3
) is removed. At the second step, we remove the intervals


1
9
 2

9


and

7
9
 8

9


, which have a total length of 2 ·  1

3

2
. At the third step, we remove 22 intervals, each of length


1
3

3
. In general,

at the nth step we remove 2−1 intervals, each of length


1
3


, for a length of 2−1 ·  1

3


= 1

3


2
3

−1
. Thus, the total

length of all removed intervals is
∞
=1

1
3


2
3

−1
=

13

1− 23
= 1


geometric series with  = 1

3
and  = 2

3


. Notice that at

the th step, the leftmost interval that is removed is


1
3





2
3


, so we never remove 0, and 0 is in the Cantor set. Also,

the rightmost interval removed is

1−  2

3


 1−  1

3


, so 1 is never removed. Some other numbers in the Cantor set

are 1
3
, 2

3
, 1

9
, 2

9
, 7

9
, and 8

9
.

(b) The area removed at the first step is 1
9
; at the second step, 8 ·  1

9

2
; at the third step, (8)2 ·  1

9

3
. In general, the area

removed at the th step is (8)
−1


1
9


= 1

9


8
9

−1
, so the total area of all removed squares is

∞
=1

1

9


8

9

−1

=
19

1 − 89
= 1.

89. (a) For
∞
=1



(+ 1)!
, 1 =

1

1 · 2 =
1

2
, 2 =

1

2
+

2

1 · 2 · 3 =
5

6
, 3 =

5

6
+

3

1 · 2 · 3 · 4 =
23

24
,

4 =
23

24
+

4

1 · 2 · 3 · 4 · 5 =
119

120
. The denominators are (+ 1)!, so a guess would be  =

(+ 1)!− 1

(+ 1)!
.

(b) For  = 1, 1 =
1

2
=

2!− 1

2!
, so the formula holds for  = 1. Assume  =

( + 1)!− 1

( + 1)!
. Then

+1 =
( + 1)!− 1

( + 1)!
+

 + 1

( + 2)!
=

( + 1)!− 1

( + 1)!
+

 + 1

( + 1)!( + 2)
=

( + 2)!− ( + 2) +  + 1

( + 2)!

=
( + 2)!− 1

( + 2)!

Thus, the formula is true for  =  + 1. So by induction, the guess is correct.

(c) lim
→∞

 = lim
→∞

(+ 1)!− 1

(+ 1)!
= lim

→∞


1− 1

(+ 1)!


= 1 and so

∞
=1



(+ 1)!
= 1.
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